Metamath Proof Explorer


Theorem ghmmhmb

Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion ghmmhmb S Grp T Grp S GrpHom T = S MndHom T

Proof

Step Hyp Ref Expression
1 ghmmhm f S GrpHom T f S MndHom T
2 eqid Base S = Base S
3 eqid Base T = Base T
4 eqid + S = + S
5 eqid + T = + T
6 simpll S Grp T Grp f S MndHom T S Grp
7 simplr S Grp T Grp f S MndHom T T Grp
8 2 3 mhmf f S MndHom T f : Base S Base T
9 8 adantl S Grp T Grp f S MndHom T f : Base S Base T
10 2 4 5 mhmlin f S MndHom T x Base S y Base S f x + S y = f x + T f y
11 10 3expb f S MndHom T x Base S y Base S f x + S y = f x + T f y
12 11 adantll S Grp T Grp f S MndHom T x Base S y Base S f x + S y = f x + T f y
13 2 3 4 5 6 7 9 12 isghmd S Grp T Grp f S MndHom T f S GrpHom T
14 13 ex S Grp T Grp f S MndHom T f S GrpHom T
15 1 14 impbid2 S Grp T Grp f S GrpHom T f S MndHom T
16 15 eqrdv S Grp T Grp S GrpHom T = S MndHom T