Metamath Proof Explorer


Theorem ghmmulg

Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses ghmmulg.b B = Base G
ghmmulg.s · ˙ = G
ghmmulg.t × ˙ = H
Assertion ghmmulg F G GrpHom H N X B F N · ˙ X = N × ˙ F X

Proof

Step Hyp Ref Expression
1 ghmmulg.b B = Base G
2 ghmmulg.s · ˙ = G
3 ghmmulg.t × ˙ = H
4 ghmmhm F G GrpHom H F G MndHom H
5 1 2 3 mhmmulg F G MndHom H N 0 X B F N · ˙ X = N × ˙ F X
6 4 5 syl3an1 F G GrpHom H N 0 X B F N · ˙ X = N × ˙ F X
7 6 3expa F G GrpHom H N 0 X B F N · ˙ X = N × ˙ F X
8 7 an32s F G GrpHom H X B N 0 F N · ˙ X = N × ˙ F X
9 8 3adantl2 F G GrpHom H N X B N 0 F N · ˙ X = N × ˙ F X
10 simpl1 F G GrpHom H N X B N N F G GrpHom H
11 10 4 syl F G GrpHom H N X B N N F G MndHom H
12 nnnn0 N N 0
13 12 ad2antll F G GrpHom H N X B N N N 0
14 simpl3 F G GrpHom H N X B N N X B
15 1 2 3 mhmmulg F G MndHom H N 0 X B F -N · ˙ X = -N × ˙ F X
16 11 13 14 15 syl3anc F G GrpHom H N X B N N F -N · ˙ X = -N × ˙ F X
17 16 fveq2d F G GrpHom H N X B N N inv g H F -N · ˙ X = inv g H -N × ˙ F X
18 ghmgrp1 F G GrpHom H G Grp
19 10 18 syl F G GrpHom H N X B N N G Grp
20 nnz N N
21 20 ad2antll F G GrpHom H N X B N N N
22 1 2 mulgcl G Grp N X B -N · ˙ X B
23 19 21 14 22 syl3anc F G GrpHom H N X B N N -N · ˙ X B
24 eqid inv g G = inv g G
25 eqid inv g H = inv g H
26 1 24 25 ghminv F G GrpHom H -N · ˙ X B F inv g G -N · ˙ X = inv g H F -N · ˙ X
27 10 23 26 syl2anc F G GrpHom H N X B N N F inv g G -N · ˙ X = inv g H F -N · ˙ X
28 ghmgrp2 F G GrpHom H H Grp
29 10 28 syl F G GrpHom H N X B N N H Grp
30 eqid Base H = Base H
31 1 30 ghmf F G GrpHom H F : B Base H
32 10 31 syl F G GrpHom H N X B N N F : B Base H
33 32 14 ffvelrnd F G GrpHom H N X B N N F X Base H
34 30 3 25 mulgneg H Grp N F X Base H -N × ˙ F X = inv g H -N × ˙ F X
35 29 21 33 34 syl3anc F G GrpHom H N X B N N -N × ˙ F X = inv g H -N × ˙ F X
36 17 27 35 3eqtr4d F G GrpHom H N X B N N F inv g G -N · ˙ X = -N × ˙ F X
37 1 2 24 mulgneg G Grp N X B -N · ˙ X = inv g G -N · ˙ X
38 19 21 14 37 syl3anc F G GrpHom H N X B N N -N · ˙ X = inv g G -N · ˙ X
39 simprl F G GrpHom H N X B N N N
40 39 recnd F G GrpHom H N X B N N N
41 40 negnegd F G GrpHom H N X B N N -N = N
42 41 oveq1d F G GrpHom H N X B N N -N · ˙ X = N · ˙ X
43 38 42 eqtr3d F G GrpHom H N X B N N inv g G -N · ˙ X = N · ˙ X
44 43 fveq2d F G GrpHom H N X B N N F inv g G -N · ˙ X = F N · ˙ X
45 36 44 eqtr3d F G GrpHom H N X B N N -N × ˙ F X = F N · ˙ X
46 41 oveq1d F G GrpHom H N X B N N -N × ˙ F X = N × ˙ F X
47 45 46 eqtr3d F G GrpHom H N X B N N F N · ˙ X = N × ˙ F X
48 simp2 F G GrpHom H N X B N
49 elznn0nn N N 0 N N
50 48 49 sylib F G GrpHom H N X B N 0 N N
51 9 47 50 mpjaodan F G GrpHom H N X B F N · ˙ X = N × ˙ F X