Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmulg.b |
|
2 |
|
ghmmulg.s |
|
3 |
|
ghmmulg.t |
|
4 |
|
ghmmhm |
|
5 |
1 2 3
|
mhmmulg |
|
6 |
4 5
|
syl3an1 |
|
7 |
6
|
3expa |
|
8 |
7
|
an32s |
|
9 |
8
|
3adantl2 |
|
10 |
|
simpl1 |
|
11 |
10 4
|
syl |
|
12 |
|
nnnn0 |
|
13 |
12
|
ad2antll |
|
14 |
|
simpl3 |
|
15 |
1 2 3
|
mhmmulg |
|
16 |
11 13 14 15
|
syl3anc |
|
17 |
16
|
fveq2d |
|
18 |
|
ghmgrp1 |
|
19 |
10 18
|
syl |
|
20 |
|
nnz |
|
21 |
20
|
ad2antll |
|
22 |
1 2
|
mulgcl |
|
23 |
19 21 14 22
|
syl3anc |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
1 24 25
|
ghminv |
|
27 |
10 23 26
|
syl2anc |
|
28 |
|
ghmgrp2 |
|
29 |
10 28
|
syl |
|
30 |
|
eqid |
|
31 |
1 30
|
ghmf |
|
32 |
10 31
|
syl |
|
33 |
32 14
|
ffvelrnd |
|
34 |
30 3 25
|
mulgneg |
|
35 |
29 21 33 34
|
syl3anc |
|
36 |
17 27 35
|
3eqtr4d |
|
37 |
1 2 24
|
mulgneg |
|
38 |
19 21 14 37
|
syl3anc |
|
39 |
|
simprl |
|
40 |
39
|
recnd |
|
41 |
40
|
negnegd |
|
42 |
41
|
oveq1d |
|
43 |
38 42
|
eqtr3d |
|
44 |
43
|
fveq2d |
|
45 |
36 44
|
eqtr3d |
|
46 |
41
|
oveq1d |
|
47 |
45 46
|
eqtr3d |
|
48 |
|
simp2 |
|
49 |
|
elznn0nn |
|
50 |
48 49
|
sylib |
|
51 |
9 47 50
|
mpjaodan |
|