Metamath Proof Explorer


Theorem ghmnsgima

Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmnsgima.1 Y = Base T
Assertion ghmnsgima F S GrpHom T U NrmSGrp S ran F = Y F U NrmSGrp T

Proof

Step Hyp Ref Expression
1 ghmnsgima.1 Y = Base T
2 simp1 F S GrpHom T U NrmSGrp S ran F = Y F S GrpHom T
3 nsgsubg U NrmSGrp S U SubGrp S
4 3 3ad2ant2 F S GrpHom T U NrmSGrp S ran F = Y U SubGrp S
5 ghmima F S GrpHom T U SubGrp S F U SubGrp T
6 2 4 5 syl2anc F S GrpHom T U NrmSGrp S ran F = Y F U SubGrp T
7 2 adantr F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F S GrpHom T
8 ghmgrp1 F S GrpHom T S Grp
9 7 8 syl F S GrpHom T U NrmSGrp S ran F = Y z Base S x U S Grp
10 simprl F S GrpHom T U NrmSGrp S ran F = Y z Base S x U z Base S
11 eqid Base S = Base S
12 11 subgss U SubGrp S U Base S
13 4 12 syl F S GrpHom T U NrmSGrp S ran F = Y U Base S
14 13 adantr F S GrpHom T U NrmSGrp S ran F = Y z Base S x U U Base S
15 simprr F S GrpHom T U NrmSGrp S ran F = Y z Base S x U x U
16 14 15 sseldd F S GrpHom T U NrmSGrp S ran F = Y z Base S x U x Base S
17 eqid + S = + S
18 11 17 grpcl S Grp z Base S x Base S z + S x Base S
19 9 10 16 18 syl3anc F S GrpHom T U NrmSGrp S ran F = Y z Base S x U z + S x Base S
20 eqid - S = - S
21 eqid - T = - T
22 11 20 21 ghmsub F S GrpHom T z + S x Base S z Base S F z + S x - S z = F z + S x - T F z
23 7 19 10 22 syl3anc F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + S x - S z = F z + S x - T F z
24 eqid + T = + T
25 11 17 24 ghmlin F S GrpHom T z Base S x Base S F z + S x = F z + T F x
26 7 10 16 25 syl3anc F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + S x = F z + T F x
27 26 oveq1d F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + S x - T F z = F z + T F x - T F z
28 23 27 eqtrd F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + S x - S z = F z + T F x - T F z
29 11 1 ghmf F S GrpHom T F : Base S Y
30 2 29 syl F S GrpHom T U NrmSGrp S ran F = Y F : Base S Y
31 30 adantr F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F : Base S Y
32 31 ffnd F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F Fn Base S
33 simpl2 F S GrpHom T U NrmSGrp S ran F = Y z Base S x U U NrmSGrp S
34 11 17 20 nsgconj U NrmSGrp S z Base S x U z + S x - S z U
35 33 10 15 34 syl3anc F S GrpHom T U NrmSGrp S ran F = Y z Base S x U z + S x - S z U
36 fnfvima F Fn Base S U Base S z + S x - S z U F z + S x - S z F U
37 32 14 35 36 syl3anc F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + S x - S z F U
38 28 37 eqeltrrd F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + T F x - T F z F U
39 38 ralrimivva F S GrpHom T U NrmSGrp S ran F = Y z Base S x U F z + T F x - T F z F U
40 30 ffnd F S GrpHom T U NrmSGrp S ran F = Y F Fn Base S
41 oveq1 x = F z x + T y = F z + T y
42 id x = F z x = F z
43 41 42 oveq12d x = F z x + T y - T x = F z + T y - T F z
44 43 eleq1d x = F z x + T y - T x F U F z + T y - T F z F U
45 44 ralbidv x = F z y F U x + T y - T x F U y F U F z + T y - T F z F U
46 45 ralrn F Fn Base S x ran F y F U x + T y - T x F U z Base S y F U F z + T y - T F z F U
47 40 46 syl F S GrpHom T U NrmSGrp S ran F = Y x ran F y F U x + T y - T x F U z Base S y F U F z + T y - T F z F U
48 simp3 F S GrpHom T U NrmSGrp S ran F = Y ran F = Y
49 48 raleqdv F S GrpHom T U NrmSGrp S ran F = Y x ran F y F U x + T y - T x F U x Y y F U x + T y - T x F U
50 oveq2 y = F x F z + T y = F z + T F x
51 50 oveq1d y = F x F z + T y - T F z = F z + T F x - T F z
52 51 eleq1d y = F x F z + T y - T F z F U F z + T F x - T F z F U
53 52 ralima F Fn Base S U Base S y F U F z + T y - T F z F U x U F z + T F x - T F z F U
54 40 13 53 syl2anc F S GrpHom T U NrmSGrp S ran F = Y y F U F z + T y - T F z F U x U F z + T F x - T F z F U
55 54 ralbidv F S GrpHom T U NrmSGrp S ran F = Y z Base S y F U F z + T y - T F z F U z Base S x U F z + T F x - T F z F U
56 47 49 55 3bitr3d F S GrpHom T U NrmSGrp S ran F = Y x Y y F U x + T y - T x F U z Base S x U F z + T F x - T F z F U
57 39 56 mpbird F S GrpHom T U NrmSGrp S ran F = Y x Y y F U x + T y - T x F U
58 1 24 21 isnsg3 F U NrmSGrp T F U SubGrp T x Y y F U x + T y - T x F U
59 6 57 58 sylanbrc F S GrpHom T U NrmSGrp S ran F = Y F U NrmSGrp T