Step |
Hyp |
Ref |
Expression |
1 |
|
ghmnsgima.1 |
|
2 |
|
simp1 |
|
3 |
|
nsgsubg |
|
4 |
3
|
3ad2ant2 |
|
5 |
|
ghmima |
|
6 |
2 4 5
|
syl2anc |
|
7 |
2
|
adantr |
|
8 |
|
ghmgrp1 |
|
9 |
7 8
|
syl |
|
10 |
|
simprl |
|
11 |
|
eqid |
|
12 |
11
|
subgss |
|
13 |
4 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
|
simprr |
|
16 |
14 15
|
sseldd |
|
17 |
|
eqid |
|
18 |
11 17
|
grpcl |
|
19 |
9 10 16 18
|
syl3anc |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
11 20 21
|
ghmsub |
|
23 |
7 19 10 22
|
syl3anc |
|
24 |
|
eqid |
|
25 |
11 17 24
|
ghmlin |
|
26 |
7 10 16 25
|
syl3anc |
|
27 |
26
|
oveq1d |
|
28 |
23 27
|
eqtrd |
|
29 |
11 1
|
ghmf |
|
30 |
2 29
|
syl |
|
31 |
30
|
adantr |
|
32 |
31
|
ffnd |
|
33 |
|
simpl2 |
|
34 |
11 17 20
|
nsgconj |
|
35 |
33 10 15 34
|
syl3anc |
|
36 |
|
fnfvima |
|
37 |
32 14 35 36
|
syl3anc |
|
38 |
28 37
|
eqeltrrd |
|
39 |
38
|
ralrimivva |
|
40 |
30
|
ffnd |
|
41 |
|
oveq1 |
|
42 |
|
id |
|
43 |
41 42
|
oveq12d |
|
44 |
43
|
eleq1d |
|
45 |
44
|
ralbidv |
|
46 |
45
|
ralrn |
|
47 |
40 46
|
syl |
|
48 |
|
simp3 |
|
49 |
48
|
raleqdv |
|
50 |
|
oveq2 |
|
51 |
50
|
oveq1d |
|
52 |
51
|
eleq1d |
|
53 |
52
|
ralima |
|
54 |
40 13 53
|
syl2anc |
|
55 |
54
|
ralbidv |
|
56 |
47 49 55
|
3bitr3d |
|
57 |
39 56
|
mpbird |
|
58 |
1 24 21
|
isnsg3 |
|
59 |
6 57 58
|
sylanbrc |
|