Step |
Hyp |
Ref |
Expression |
1 |
|
cnvimass |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
2 3
|
ghmf |
|
5 |
4
|
adantr |
|
6 |
1 5
|
fssdm |
|
7 |
|
ghmgrp1 |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
2 9
|
grpidcl |
|
11 |
8 10
|
syl |
|
12 |
|
eqid |
|
13 |
9 12
|
ghmid |
|
14 |
13
|
adantr |
|
15 |
12
|
subg0cl |
|
16 |
15
|
adantl |
|
17 |
14 16
|
eqeltrd |
|
18 |
5
|
ffnd |
|
19 |
|
elpreima |
|
20 |
18 19
|
syl |
|
21 |
11 17 20
|
mpbir2and |
|
22 |
21
|
ne0d |
|
23 |
|
elpreima |
|
24 |
18 23
|
syl |
|
25 |
|
elpreima |
|
26 |
18 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
7
|
ad2antrr |
|
29 |
|
simprll |
|
30 |
|
simprrl |
|
31 |
|
eqid |
|
32 |
2 31
|
grpcl |
|
33 |
28 29 30 32
|
syl3anc |
|
34 |
|
simpll |
|
35 |
|
eqid |
|
36 |
2 31 35
|
ghmlin |
|
37 |
34 29 30 36
|
syl3anc |
|
38 |
|
simplr |
|
39 |
|
simprlr |
|
40 |
|
simprrr |
|
41 |
35
|
subgcl |
|
42 |
38 39 40 41
|
syl3anc |
|
43 |
37 42
|
eqeltrd |
|
44 |
|
elpreima |
|
45 |
18 44
|
syl |
|
46 |
45
|
adantr |
|
47 |
33 43 46
|
mpbir2and |
|
48 |
47
|
expr |
|
49 |
27 48
|
sylbid |
|
50 |
49
|
ralrimiv |
|
51 |
|
simprl |
|
52 |
|
eqid |
|
53 |
2 52
|
grpinvcl |
|
54 |
8 51 53
|
syl2an2r |
|
55 |
|
eqid |
|
56 |
2 52 55
|
ghminv |
|
57 |
56
|
ad2ant2r |
|
58 |
55
|
subginvcl |
|
59 |
58
|
ad2ant2l |
|
60 |
57 59
|
eqeltrd |
|
61 |
|
elpreima |
|
62 |
18 61
|
syl |
|
63 |
62
|
adantr |
|
64 |
54 60 63
|
mpbir2and |
|
65 |
50 64
|
jca |
|
66 |
65
|
ex |
|
67 |
24 66
|
sylbid |
|
68 |
67
|
ralrimiv |
|
69 |
2 31 52
|
issubg2 |
|
70 |
8 69
|
syl |
|
71 |
6 22 68 70
|
mpbir3and |
|