Metamath Proof Explorer


Theorem ghmpreima

Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmpreima F S GrpHom T V SubGrp T F -1 V SubGrp S

Proof

Step Hyp Ref Expression
1 cnvimass F -1 V dom F
2 eqid Base S = Base S
3 eqid Base T = Base T
4 2 3 ghmf F S GrpHom T F : Base S Base T
5 4 adantr F S GrpHom T V SubGrp T F : Base S Base T
6 1 5 fssdm F S GrpHom T V SubGrp T F -1 V Base S
7 ghmgrp1 F S GrpHom T S Grp
8 7 adantr F S GrpHom T V SubGrp T S Grp
9 eqid 0 S = 0 S
10 2 9 grpidcl S Grp 0 S Base S
11 8 10 syl F S GrpHom T V SubGrp T 0 S Base S
12 eqid 0 T = 0 T
13 9 12 ghmid F S GrpHom T F 0 S = 0 T
14 13 adantr F S GrpHom T V SubGrp T F 0 S = 0 T
15 12 subg0cl V SubGrp T 0 T V
16 15 adantl F S GrpHom T V SubGrp T 0 T V
17 14 16 eqeltrd F S GrpHom T V SubGrp T F 0 S V
18 5 ffnd F S GrpHom T V SubGrp T F Fn Base S
19 elpreima F Fn Base S 0 S F -1 V 0 S Base S F 0 S V
20 18 19 syl F S GrpHom T V SubGrp T 0 S F -1 V 0 S Base S F 0 S V
21 11 17 20 mpbir2and F S GrpHom T V SubGrp T 0 S F -1 V
22 21 ne0d F S GrpHom T V SubGrp T F -1 V
23 elpreima F Fn Base S a F -1 V a Base S F a V
24 18 23 syl F S GrpHom T V SubGrp T a F -1 V a Base S F a V
25 elpreima F Fn Base S b F -1 V b Base S F b V
26 18 25 syl F S GrpHom T V SubGrp T b F -1 V b Base S F b V
27 26 adantr F S GrpHom T V SubGrp T a Base S F a V b F -1 V b Base S F b V
28 7 ad2antrr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V S Grp
29 simprll F S GrpHom T V SubGrp T a Base S F a V b Base S F b V a Base S
30 simprrl F S GrpHom T V SubGrp T a Base S F a V b Base S F b V b Base S
31 eqid + S = + S
32 2 31 grpcl S Grp a Base S b Base S a + S b Base S
33 28 29 30 32 syl3anc F S GrpHom T V SubGrp T a Base S F a V b Base S F b V a + S b Base S
34 simpll F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F S GrpHom T
35 eqid + T = + T
36 2 31 35 ghmlin F S GrpHom T a Base S b Base S F a + S b = F a + T F b
37 34 29 30 36 syl3anc F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F a + S b = F a + T F b
38 simplr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V V SubGrp T
39 simprlr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F a V
40 simprrr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F b V
41 35 subgcl V SubGrp T F a V F b V F a + T F b V
42 38 39 40 41 syl3anc F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F a + T F b V
43 37 42 eqeltrd F S GrpHom T V SubGrp T a Base S F a V b Base S F b V F a + S b V
44 elpreima F Fn Base S a + S b F -1 V a + S b Base S F a + S b V
45 18 44 syl F S GrpHom T V SubGrp T a + S b F -1 V a + S b Base S F a + S b V
46 45 adantr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V a + S b F -1 V a + S b Base S F a + S b V
47 33 43 46 mpbir2and F S GrpHom T V SubGrp T a Base S F a V b Base S F b V a + S b F -1 V
48 47 expr F S GrpHom T V SubGrp T a Base S F a V b Base S F b V a + S b F -1 V
49 27 48 sylbid F S GrpHom T V SubGrp T a Base S F a V b F -1 V a + S b F -1 V
50 49 ralrimiv F S GrpHom T V SubGrp T a Base S F a V b F -1 V a + S b F -1 V
51 simprl F S GrpHom T V SubGrp T a Base S F a V a Base S
52 eqid inv g S = inv g S
53 2 52 grpinvcl S Grp a Base S inv g S a Base S
54 8 51 53 syl2an2r F S GrpHom T V SubGrp T a Base S F a V inv g S a Base S
55 eqid inv g T = inv g T
56 2 52 55 ghminv F S GrpHom T a Base S F inv g S a = inv g T F a
57 56 ad2ant2r F S GrpHom T V SubGrp T a Base S F a V F inv g S a = inv g T F a
58 55 subginvcl V SubGrp T F a V inv g T F a V
59 58 ad2ant2l F S GrpHom T V SubGrp T a Base S F a V inv g T F a V
60 57 59 eqeltrd F S GrpHom T V SubGrp T a Base S F a V F inv g S a V
61 elpreima F Fn Base S inv g S a F -1 V inv g S a Base S F inv g S a V
62 18 61 syl F S GrpHom T V SubGrp T inv g S a F -1 V inv g S a Base S F inv g S a V
63 62 adantr F S GrpHom T V SubGrp T a Base S F a V inv g S a F -1 V inv g S a Base S F inv g S a V
64 54 60 63 mpbir2and F S GrpHom T V SubGrp T a Base S F a V inv g S a F -1 V
65 50 64 jca F S GrpHom T V SubGrp T a Base S F a V b F -1 V a + S b F -1 V inv g S a F -1 V
66 65 ex F S GrpHom T V SubGrp T a Base S F a V b F -1 V a + S b F -1 V inv g S a F -1 V
67 24 66 sylbid F S GrpHom T V SubGrp T a F -1 V b F -1 V a + S b F -1 V inv g S a F -1 V
68 67 ralrimiv F S GrpHom T V SubGrp T a F -1 V b F -1 V a + S b F -1 V inv g S a F -1 V
69 2 31 52 issubg2 S Grp F -1 V SubGrp S F -1 V Base S F -1 V a F -1 V b F -1 V a + S b F -1 V inv g S a F -1 V
70 8 69 syl F S GrpHom T V SubGrp T F -1 V SubGrp S F -1 V Base S F -1 V a F -1 V b F -1 V a + S b F -1 V inv g S a F -1 V
71 6 22 68 70 mpbir3and F S GrpHom T V SubGrp T F -1 V SubGrp S