Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ghmpreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | ghmf | |
5 | 4 | adantr | |
6 | 1 5 | fssdm | |
7 | ghmgrp1 | |
|
8 | 7 | adantr | |
9 | eqid | |
|
10 | 2 9 | grpidcl | |
11 | 8 10 | syl | |
12 | eqid | |
|
13 | 9 12 | ghmid | |
14 | 13 | adantr | |
15 | 12 | subg0cl | |
16 | 15 | adantl | |
17 | 14 16 | eqeltrd | |
18 | 5 | ffnd | |
19 | elpreima | |
|
20 | 18 19 | syl | |
21 | 11 17 20 | mpbir2and | |
22 | 21 | ne0d | |
23 | elpreima | |
|
24 | 18 23 | syl | |
25 | elpreima | |
|
26 | 18 25 | syl | |
27 | 26 | adantr | |
28 | 7 | ad2antrr | |
29 | simprll | |
|
30 | simprrl | |
|
31 | eqid | |
|
32 | 2 31 | grpcl | |
33 | 28 29 30 32 | syl3anc | |
34 | simpll | |
|
35 | eqid | |
|
36 | 2 31 35 | ghmlin | |
37 | 34 29 30 36 | syl3anc | |
38 | simplr | |
|
39 | simprlr | |
|
40 | simprrr | |
|
41 | 35 | subgcl | |
42 | 38 39 40 41 | syl3anc | |
43 | 37 42 | eqeltrd | |
44 | elpreima | |
|
45 | 18 44 | syl | |
46 | 45 | adantr | |
47 | 33 43 46 | mpbir2and | |
48 | 47 | expr | |
49 | 27 48 | sylbid | |
50 | 49 | ralrimiv | |
51 | simprl | |
|
52 | eqid | |
|
53 | 2 52 | grpinvcl | |
54 | 8 51 53 | syl2an2r | |
55 | eqid | |
|
56 | 2 52 55 | ghminv | |
57 | 56 | ad2ant2r | |
58 | 55 | subginvcl | |
59 | 58 | ad2ant2l | |
60 | 57 59 | eqeltrd | |
61 | elpreima | |
|
62 | 18 61 | syl | |
63 | 62 | adantr | |
64 | 54 60 63 | mpbir2and | |
65 | 50 64 | jca | |
66 | 65 | ex | |
67 | 24 66 | sylbid | |
68 | 67 | ralrimiv | |
69 | 2 31 52 | issubg2 | |
70 | 8 69 | syl | |
71 | 6 22 68 70 | mpbir3and | |