Metamath Proof Explorer


Theorem ghmpreima

Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmpreima FSGrpHomTVSubGrpTF-1VSubGrpS

Proof

Step Hyp Ref Expression
1 cnvimass F-1VdomF
2 eqid BaseS=BaseS
3 eqid BaseT=BaseT
4 2 3 ghmf FSGrpHomTF:BaseSBaseT
5 4 adantr FSGrpHomTVSubGrpTF:BaseSBaseT
6 1 5 fssdm FSGrpHomTVSubGrpTF-1VBaseS
7 ghmgrp1 FSGrpHomTSGrp
8 7 adantr FSGrpHomTVSubGrpTSGrp
9 eqid 0S=0S
10 2 9 grpidcl SGrp0SBaseS
11 8 10 syl FSGrpHomTVSubGrpT0SBaseS
12 eqid 0T=0T
13 9 12 ghmid FSGrpHomTF0S=0T
14 13 adantr FSGrpHomTVSubGrpTF0S=0T
15 12 subg0cl VSubGrpT0TV
16 15 adantl FSGrpHomTVSubGrpT0TV
17 14 16 eqeltrd FSGrpHomTVSubGrpTF0SV
18 5 ffnd FSGrpHomTVSubGrpTFFnBaseS
19 elpreima FFnBaseS0SF-1V0SBaseSF0SV
20 18 19 syl FSGrpHomTVSubGrpT0SF-1V0SBaseSF0SV
21 11 17 20 mpbir2and FSGrpHomTVSubGrpT0SF-1V
22 21 ne0d FSGrpHomTVSubGrpTF-1V
23 elpreima FFnBaseSaF-1VaBaseSFaV
24 18 23 syl FSGrpHomTVSubGrpTaF-1VaBaseSFaV
25 elpreima FFnBaseSbF-1VbBaseSFbV
26 18 25 syl FSGrpHomTVSubGrpTbF-1VbBaseSFbV
27 26 adantr FSGrpHomTVSubGrpTaBaseSFaVbF-1VbBaseSFbV
28 7 ad2antrr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVSGrp
29 simprll FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVaBaseS
30 simprrl FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVbBaseS
31 eqid +S=+S
32 2 31 grpcl SGrpaBaseSbBaseSa+SbBaseS
33 28 29 30 32 syl3anc FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVa+SbBaseS
34 simpll FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFSGrpHomT
35 eqid +T=+T
36 2 31 35 ghmlin FSGrpHomTaBaseSbBaseSFa+Sb=Fa+TFb
37 34 29 30 36 syl3anc FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFa+Sb=Fa+TFb
38 simplr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVVSubGrpT
39 simprlr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFaV
40 simprrr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFbV
41 35 subgcl VSubGrpTFaVFbVFa+TFbV
42 38 39 40 41 syl3anc FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFa+TFbV
43 37 42 eqeltrd FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVFa+SbV
44 elpreima FFnBaseSa+SbF-1Va+SbBaseSFa+SbV
45 18 44 syl FSGrpHomTVSubGrpTa+SbF-1Va+SbBaseSFa+SbV
46 45 adantr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVa+SbF-1Va+SbBaseSFa+SbV
47 33 43 46 mpbir2and FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVa+SbF-1V
48 47 expr FSGrpHomTVSubGrpTaBaseSFaVbBaseSFbVa+SbF-1V
49 27 48 sylbid FSGrpHomTVSubGrpTaBaseSFaVbF-1Va+SbF-1V
50 49 ralrimiv FSGrpHomTVSubGrpTaBaseSFaVbF-1Va+SbF-1V
51 simprl FSGrpHomTVSubGrpTaBaseSFaVaBaseS
52 eqid invgS=invgS
53 2 52 grpinvcl SGrpaBaseSinvgSaBaseS
54 8 51 53 syl2an2r FSGrpHomTVSubGrpTaBaseSFaVinvgSaBaseS
55 eqid invgT=invgT
56 2 52 55 ghminv FSGrpHomTaBaseSFinvgSa=invgTFa
57 56 ad2ant2r FSGrpHomTVSubGrpTaBaseSFaVFinvgSa=invgTFa
58 55 subginvcl VSubGrpTFaVinvgTFaV
59 58 ad2ant2l FSGrpHomTVSubGrpTaBaseSFaVinvgTFaV
60 57 59 eqeltrd FSGrpHomTVSubGrpTaBaseSFaVFinvgSaV
61 elpreima FFnBaseSinvgSaF-1VinvgSaBaseSFinvgSaV
62 18 61 syl FSGrpHomTVSubGrpTinvgSaF-1VinvgSaBaseSFinvgSaV
63 62 adantr FSGrpHomTVSubGrpTaBaseSFaVinvgSaF-1VinvgSaBaseSFinvgSaV
64 54 60 63 mpbir2and FSGrpHomTVSubGrpTaBaseSFaVinvgSaF-1V
65 50 64 jca FSGrpHomTVSubGrpTaBaseSFaVbF-1Va+SbF-1VinvgSaF-1V
66 65 ex FSGrpHomTVSubGrpTaBaseSFaVbF-1Va+SbF-1VinvgSaF-1V
67 24 66 sylbid FSGrpHomTVSubGrpTaF-1VbF-1Va+SbF-1VinvgSaF-1V
68 67 ralrimiv FSGrpHomTVSubGrpTaF-1VbF-1Va+SbF-1VinvgSaF-1V
69 2 31 52 issubg2 SGrpF-1VSubGrpSF-1VBaseSF-1VaF-1VbF-1Va+SbF-1VinvgSaF-1V
70 8 69 syl FSGrpHomTVSubGrpTF-1VSubGrpSF-1VBaseSF-1VaF-1VbF-1Va+SbF-1VinvgSaF-1V
71 6 22 68 70 mpbir3and FSGrpHomTVSubGrpTF-1VSubGrpS