Metamath Proof Explorer


Theorem ghmpropd

Description: Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ghmpropd.a φ B = Base J
ghmpropd.b φ C = Base K
ghmpropd.c φ B = Base L
ghmpropd.d φ C = Base M
ghmpropd.e φ x B y B x + J y = x + L y
ghmpropd.f φ x C y C x + K y = x + M y
Assertion ghmpropd φ J GrpHom K = L GrpHom M

Proof

Step Hyp Ref Expression
1 ghmpropd.a φ B = Base J
2 ghmpropd.b φ C = Base K
3 ghmpropd.c φ B = Base L
4 ghmpropd.d φ C = Base M
5 ghmpropd.e φ x B y B x + J y = x + L y
6 ghmpropd.f φ x C y C x + K y = x + M y
7 1 3 5 grppropd φ J Grp L Grp
8 2 4 6 grppropd φ K Grp M Grp
9 7 8 anbi12d φ J Grp K Grp L Grp M Grp
10 1 2 3 4 5 6 mhmpropd φ J MndHom K = L MndHom M
11 10 eleq2d φ f J MndHom K f L MndHom M
12 9 11 anbi12d φ J Grp K Grp f J MndHom K L Grp M Grp f L MndHom M
13 ghmgrp1 f J GrpHom K J Grp
14 ghmgrp2 f J GrpHom K K Grp
15 13 14 jca f J GrpHom K J Grp K Grp
16 ghmmhmb J Grp K Grp J GrpHom K = J MndHom K
17 16 eleq2d J Grp K Grp f J GrpHom K f J MndHom K
18 15 17 biadanii f J GrpHom K J Grp K Grp f J MndHom K
19 ghmgrp1 f L GrpHom M L Grp
20 ghmgrp2 f L GrpHom M M Grp
21 19 20 jca f L GrpHom M L Grp M Grp
22 ghmmhmb L Grp M Grp L GrpHom M = L MndHom M
23 22 eleq2d L Grp M Grp f L GrpHom M f L MndHom M
24 21 23 biadanii f L GrpHom M L Grp M Grp f L MndHom M
25 12 18 24 3bitr4g φ f J GrpHom K f L GrpHom M
26 25 eqrdv φ J GrpHom K = L GrpHom M