Metamath Proof Explorer


Theorem ghmqusker

Description: A surjective group homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0 ˙ = 0 H
ghmqusker.f φ F G GrpHom H
ghmqusker.k K = F -1 0 ˙
ghmqusker.q Q = G / 𝑠 G ~ QG K
ghmqusker.j J = q Base Q F q
ghmqusker.s φ ran F = Base H
Assertion ghmqusker φ J Q GrpIso H

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 ˙ = 0 H
2 ghmqusker.f φ F G GrpHom H
3 ghmqusker.k K = F -1 0 ˙
4 ghmqusker.q Q = G / 𝑠 G ~ QG K
5 ghmqusker.j J = q Base Q F q
6 ghmqusker.s φ ran F = Base H
7 1 2 3 4 5 ghmquskerlem3 φ J Q GrpHom H
8 ghmgrp1 F G GrpHom H G Grp
9 2 8 syl φ G Grp
10 9 ad4antr φ r Base Q x r J r = F x J r = 0 ˙ G Grp
11 1 ghmker F G GrpHom H F -1 0 ˙ NrmSGrp G
12 2 11 syl φ F -1 0 ˙ NrmSGrp G
13 3 12 eqeltrid φ K NrmSGrp G
14 nsgsubg K NrmSGrp G K SubGrp G
15 13 14 syl φ K SubGrp G
16 15 ad4antr φ r Base Q x r J r = F x J r = 0 ˙ K SubGrp G
17 eqid Base G = Base G
18 eqid Base H = Base H
19 17 18 ghmf F G GrpHom H F : Base G Base H
20 2 19 syl φ F : Base G Base H
21 20 ffnd φ F Fn Base G
22 21 ad3antrrr φ r Base Q x r J r = F x F Fn Base G
23 22 adantr φ r Base Q x r J r = F x J r = 0 ˙ F Fn Base G
24 4 a1i φ Q = G / 𝑠 G ~ QG K
25 eqidd φ Base G = Base G
26 ovexd φ G ~ QG K V
27 24 25 26 9 qusbas φ Base G / G ~ QG K = Base Q
28 eqid G ~ QG K = G ~ QG K
29 17 28 eqger K SubGrp G G ~ QG K Er Base G
30 13 14 29 3syl φ G ~ QG K Er Base G
31 30 qsss φ Base G / G ~ QG K 𝒫 Base G
32 27 31 eqsstrrd φ Base Q 𝒫 Base G
33 32 sselda φ r Base Q r 𝒫 Base G
34 33 elpwid φ r Base Q r Base G
35 34 sselda φ r Base Q x r x Base G
36 35 adantr φ r Base Q x r J r = F x x Base G
37 36 adantr φ r Base Q x r J r = F x J r = 0 ˙ x Base G
38 simpr φ r Base Q x r J r = F x J r = F x
39 38 eqeq1d φ r Base Q x r J r = F x J r = 0 ˙ F x = 0 ˙
40 39 biimpa φ r Base Q x r J r = F x J r = 0 ˙ F x = 0 ˙
41 fniniseg F Fn Base G x F -1 0 ˙ x Base G F x = 0 ˙
42 41 biimpar F Fn Base G x Base G F x = 0 ˙ x F -1 0 ˙
43 23 37 40 42 syl12anc φ r Base Q x r J r = F x J r = 0 ˙ x F -1 0 ˙
44 43 3 eleqtrrdi φ r Base Q x r J r = F x J r = 0 ˙ x K
45 28 eqg0el G Grp K SubGrp G x G ~ QG K = K x K
46 45 biimpar G Grp K SubGrp G x K x G ~ QG K = K
47 10 16 44 46 syl21anc φ r Base Q x r J r = F x J r = 0 ˙ x G ~ QG K = K
48 30 ad4antr φ r Base Q x r J r = F x J r = 0 ˙ G ~ QG K Er Base G
49 simpr φ r Base Q r Base Q
50 27 adantr φ r Base Q Base G / G ~ QG K = Base Q
51 49 50 eleqtrrd φ r Base Q r Base G / G ~ QG K
52 51 ad3antrrr φ r Base Q x r J r = F x J r = 0 ˙ r Base G / G ~ QG K
53 simpllr φ r Base Q x r J r = F x J r = 0 ˙ x r
54 qsel G ~ QG K Er Base G r Base G / G ~ QG K x r r = x G ~ QG K
55 48 52 53 54 syl3anc φ r Base Q x r J r = F x J r = 0 ˙ r = x G ~ QG K
56 eqid 0 G = 0 G
57 17 28 56 eqgid K SubGrp G 0 G G ~ QG K = K
58 15 57 syl φ 0 G G ~ QG K = K
59 58 ad4antr φ r Base Q x r J r = F x J r = 0 ˙ 0 G G ~ QG K = K
60 47 55 59 3eqtr4d φ r Base Q x r J r = F x J r = 0 ˙ r = 0 G G ~ QG K
61 4 56 qus0 K NrmSGrp G 0 G G ~ QG K = 0 Q
62 13 61 syl φ 0 G G ~ QG K = 0 Q
63 62 ad3antrrr φ r Base Q x r J r = F x 0 G G ~ QG K = 0 Q
64 63 adantr φ r Base Q x r J r = F x J r = 0 ˙ 0 G G ~ QG K = 0 Q
65 60 64 eqtrd φ r Base Q x r J r = F x J r = 0 ˙ r = 0 Q
66 63 eqeq2d φ r Base Q x r J r = F x r = 0 G G ~ QG K r = 0 Q
67 66 biimpar φ r Base Q x r J r = F x r = 0 Q r = 0 G G ~ QG K
68 67 fveq2d φ r Base Q x r J r = F x r = 0 Q J r = J 0 G G ~ QG K
69 2 adantr φ r Base Q F G GrpHom H
70 69 ad3antrrr φ r Base Q x r J r = F x r = 0 Q F G GrpHom H
71 17 56 grpidcl G Grp 0 G Base G
72 9 71 syl φ 0 G Base G
73 72 ad4antr φ r Base Q x r J r = F x r = 0 Q 0 G Base G
74 1 70 3 4 5 73 ghmquskerlem1 φ r Base Q x r J r = F x r = 0 Q J 0 G G ~ QG K = F 0 G
75 56 1 ghmid F G GrpHom H F 0 G = 0 ˙
76 2 75 syl φ F 0 G = 0 ˙
77 76 ad4antr φ r Base Q x r J r = F x r = 0 Q F 0 G = 0 ˙
78 68 74 77 3eqtrd φ r Base Q x r J r = F x r = 0 Q J r = 0 ˙
79 65 78 impbida φ r Base Q x r J r = F x J r = 0 ˙ r = 0 Q
80 1 69 3 4 5 49 ghmquskerlem2 φ r Base Q x r J r = F x
81 79 80 r19.29a φ r Base Q J r = 0 ˙ r = 0 Q
82 81 pm5.32da φ r Base Q J r = 0 ˙ r Base Q r = 0 Q
83 simpr φ r = 0 Q r = 0 Q
84 4 qusgrp K NrmSGrp G Q Grp
85 13 84 syl φ Q Grp
86 eqid Base Q = Base Q
87 eqid 0 Q = 0 Q
88 86 87 grpidcl Q Grp 0 Q Base Q
89 85 88 syl φ 0 Q Base Q
90 89 adantr φ r = 0 Q 0 Q Base Q
91 83 90 eqeltrd φ r = 0 Q r Base Q
92 91 ex φ r = 0 Q r Base Q
93 92 pm4.71rd φ r = 0 Q r Base Q r = 0 Q
94 82 93 bitr4d φ r Base Q J r = 0 ˙ r = 0 Q
95 2 adantr φ q Base Q F G GrpHom H
96 95 imaexd φ q Base Q F q V
97 96 uniexd φ q Base Q F q V
98 5 a1i φ J = q Base Q F q
99 22 36 fnfvelrnd φ r Base Q x r J r = F x F x ran F
100 6 ad3antrrr φ r Base Q x r J r = F x ran F = Base H
101 99 100 eleqtrd φ r Base Q x r J r = F x F x Base H
102 38 101 eqeltrd φ r Base Q x r J r = F x J r Base H
103 102 80 r19.29a φ r Base Q J r Base H
104 97 98 103 fmpt2d φ J : Base Q Base H
105 104 ffnd φ J Fn Base Q
106 fniniseg J Fn Base Q r J -1 0 ˙ r Base Q J r = 0 ˙
107 105 106 syl φ r J -1 0 ˙ r Base Q J r = 0 ˙
108 velsn r 0 Q r = 0 Q
109 108 a1i φ r 0 Q r = 0 Q
110 94 107 109 3bitr4d φ r J -1 0 ˙ r 0 Q
111 110 eqrdv φ J -1 0 ˙ = 0 Q
112 86 18 87 1 kerf1ghm J Q GrpHom H J : Base Q 1-1 Base H J -1 0 ˙ = 0 Q
113 112 biimpar J Q GrpHom H J -1 0 ˙ = 0 Q J : Base Q 1-1 Base H
114 7 111 113 syl2anc φ J : Base Q 1-1 Base H
115 f1f1orn J : Base Q 1-1 Base H J : Base Q 1-1 onto ran J
116 114 115 syl φ J : Base Q 1-1 onto ran J
117 simpr φ x Base G x Base G
118 ovex G ~ QG K V
119 118 ecelqsi x Base G x G ~ QG K Base G / G ~ QG K
120 117 119 syl φ x Base G x G ~ QG K Base G / G ~ QG K
121 27 adantr φ x Base G Base G / G ~ QG K = Base Q
122 120 121 eleqtrd φ x Base G x G ~ QG K Base Q
123 elqsi r Base G / G ~ QG K x Base G r = x G ~ QG K
124 51 123 syl φ r Base Q x Base G r = x G ~ QG K
125 simpr φ x Base G r = x G ~ QG K r = x G ~ QG K
126 125 fveq2d φ x Base G r = x G ~ QG K J r = J x G ~ QG K
127 2 adantr φ x Base G F G GrpHom H
128 1 127 3 4 5 117 ghmquskerlem1 φ x Base G J x G ~ QG K = F x
129 128 adantr φ x Base G r = x G ~ QG K J x G ~ QG K = F x
130 126 129 eqtrd φ x Base G r = x G ~ QG K J r = F x
131 130 3impa φ x Base G r = x G ~ QG K J r = F x
132 131 eqeq1d φ x Base G r = x G ~ QG K J r = y F x = y
133 122 124 132 rexxfrd2 φ r Base Q J r = y x Base G F x = y
134 fvelrnb J Fn Base Q y ran J r Base Q J r = y
135 105 134 syl φ y ran J r Base Q J r = y
136 fvelrnb F Fn Base G y ran F x Base G F x = y
137 21 136 syl φ y ran F x Base G F x = y
138 133 135 137 3bitr4rd φ y ran F y ran J
139 138 eqrdv φ ran F = ran J
140 139 6 eqtr3d φ ran J = Base H
141 140 f1oeq3d φ J : Base Q 1-1 onto ran J J : Base Q 1-1 onto Base H
142 116 141 mpbid φ J : Base Q 1-1 onto Base H
143 86 18 isgim J Q GrpIso H J Q GrpHom H J : Base Q 1-1 onto Base H
144 7 142 143 sylanbrc φ J Q GrpIso H