Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|
2 |
|
ghmqusker.f |
|
3 |
|
ghmqusker.k |
|
4 |
|
ghmqusker.q |
|
5 |
|
ghmqusker.j |
|
6 |
|
ghmqusker.s |
|
7 |
1 2 3 4 5
|
ghmquskerlem3 |
|
8 |
|
ghmgrp1 |
|
9 |
2 8
|
syl |
|
10 |
9
|
ad4antr |
|
11 |
1
|
ghmker |
|
12 |
2 11
|
syl |
|
13 |
3 12
|
eqeltrid |
|
14 |
|
nsgsubg |
|
15 |
13 14
|
syl |
|
16 |
15
|
ad4antr |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
17 18
|
ghmf |
|
20 |
2 19
|
syl |
|
21 |
20
|
ffnd |
|
22 |
21
|
ad3antrrr |
|
23 |
22
|
adantr |
|
24 |
4
|
a1i |
|
25 |
|
eqidd |
|
26 |
|
ovexd |
|
27 |
24 25 26 9
|
qusbas |
|
28 |
|
eqid |
|
29 |
17 28
|
eqger |
|
30 |
13 14 29
|
3syl |
|
31 |
30
|
qsss |
|
32 |
27 31
|
eqsstrrd |
|
33 |
32
|
sselda |
|
34 |
33
|
elpwid |
|
35 |
34
|
sselda |
|
36 |
35
|
adantr |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
38
|
eqeq1d |
|
40 |
39
|
biimpa |
|
41 |
|
fniniseg |
|
42 |
41
|
biimpar |
|
43 |
23 37 40 42
|
syl12anc |
|
44 |
43 3
|
eleqtrrdi |
|
45 |
28
|
eqg0el |
|
46 |
45
|
biimpar |
|
47 |
10 16 44 46
|
syl21anc |
|
48 |
30
|
ad4antr |
|
49 |
|
simpr |
|
50 |
27
|
adantr |
|
51 |
49 50
|
eleqtrrd |
|
52 |
51
|
ad3antrrr |
|
53 |
|
simpllr |
|
54 |
|
qsel |
|
55 |
48 52 53 54
|
syl3anc |
|
56 |
|
eqid |
|
57 |
17 28 56
|
eqgid |
|
58 |
15 57
|
syl |
|
59 |
58
|
ad4antr |
|
60 |
47 55 59
|
3eqtr4d |
|
61 |
4 56
|
qus0 |
|
62 |
13 61
|
syl |
|
63 |
62
|
ad3antrrr |
|
64 |
63
|
adantr |
|
65 |
60 64
|
eqtrd |
|
66 |
63
|
eqeq2d |
|
67 |
66
|
biimpar |
|
68 |
67
|
fveq2d |
|
69 |
2
|
adantr |
|
70 |
69
|
ad3antrrr |
|
71 |
17 56
|
grpidcl |
|
72 |
9 71
|
syl |
|
73 |
72
|
ad4antr |
|
74 |
1 70 3 4 5 73
|
ghmquskerlem1 |
|
75 |
56 1
|
ghmid |
|
76 |
2 75
|
syl |
|
77 |
76
|
ad4antr |
|
78 |
68 74 77
|
3eqtrd |
|
79 |
65 78
|
impbida |
|
80 |
1 69 3 4 5 49
|
ghmquskerlem2 |
|
81 |
79 80
|
r19.29a |
|
82 |
81
|
pm5.32da |
|
83 |
|
simpr |
|
84 |
4
|
qusgrp |
|
85 |
13 84
|
syl |
|
86 |
|
eqid |
|
87 |
|
eqid |
|
88 |
86 87
|
grpidcl |
|
89 |
85 88
|
syl |
|
90 |
89
|
adantr |
|
91 |
83 90
|
eqeltrd |
|
92 |
91
|
ex |
|
93 |
92
|
pm4.71rd |
|
94 |
82 93
|
bitr4d |
|
95 |
2
|
adantr |
|
96 |
95
|
imaexd |
|
97 |
96
|
uniexd |
|
98 |
5
|
a1i |
|
99 |
22 36
|
fnfvelrnd |
|
100 |
6
|
ad3antrrr |
|
101 |
99 100
|
eleqtrd |
|
102 |
38 101
|
eqeltrd |
|
103 |
102 80
|
r19.29a |
|
104 |
97 98 103
|
fmpt2d |
|
105 |
104
|
ffnd |
|
106 |
|
fniniseg |
|
107 |
105 106
|
syl |
|
108 |
|
velsn |
|
109 |
108
|
a1i |
|
110 |
94 107 109
|
3bitr4d |
|
111 |
110
|
eqrdv |
|
112 |
86 18 87 1
|
kerf1ghm |
|
113 |
112
|
biimpar |
|
114 |
7 111 113
|
syl2anc |
|
115 |
|
f1f1orn |
|
116 |
114 115
|
syl |
|
117 |
|
simpr |
|
118 |
|
ovex |
|
119 |
118
|
ecelqsi |
|
120 |
117 119
|
syl |
|
121 |
27
|
adantr |
|
122 |
120 121
|
eleqtrd |
|
123 |
|
elqsi |
|
124 |
51 123
|
syl |
|
125 |
|
simpr |
|
126 |
125
|
fveq2d |
|
127 |
2
|
adantr |
|
128 |
1 127 3 4 5 117
|
ghmquskerlem1 |
|
129 |
128
|
adantr |
|
130 |
126 129
|
eqtrd |
|
131 |
130
|
3impa |
|
132 |
131
|
eqeq1d |
|
133 |
122 124 132
|
rexxfrd2 |
|
134 |
|
fvelrnb |
|
135 |
105 134
|
syl |
|
136 |
|
fvelrnb |
|
137 |
21 136
|
syl |
|
138 |
133 135 137
|
3bitr4rd |
|
139 |
138
|
eqrdv |
|
140 |
139 6
|
eqtr3d |
|
141 |
140
|
f1oeq3d |
|
142 |
116 141
|
mpbid |
|
143 |
86 18
|
isgim |
|
144 |
7 142 143
|
sylanbrc |
|