Metamath Proof Explorer


Theorem ghmquskerco

Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0 ˙ = 0 H
ghmqusker.f φ F G GrpHom H
ghmqusker.k K = F -1 0 ˙
ghmqusker.q Q = G / 𝑠 G ~ QG K
ghmqusker.j J = q Base Q F q
ghmquskerco.b B = Base G
ghmquskerco.l L = x B x G ~ QG K
Assertion ghmquskerco φ F = J L

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 ˙ = 0 H
2 ghmqusker.f φ F G GrpHom H
3 ghmqusker.k K = F -1 0 ˙
4 ghmqusker.q Q = G / 𝑠 G ~ QG K
5 ghmqusker.j J = q Base Q F q
6 ghmquskerco.b B = Base G
7 ghmquskerco.l L = x B x G ~ QG K
8 eqid Base H = Base H
9 6 8 ghmf F G GrpHom H F : B Base H
10 2 9 syl φ F : B Base H
11 10 ffnd φ F Fn B
12 2 adantr φ x B F G GrpHom H
13 12 imaexd φ x B F x G ~ QG K V
14 13 uniexd φ x B F x G ~ QG K V
15 14 ralrimiva φ x B F x G ~ QG K V
16 eqid x B F x G ~ QG K = x B F x G ~ QG K
17 16 fnmpt x B F x G ~ QG K V x B F x G ~ QG K Fn B
18 15 17 syl φ x B F x G ~ QG K Fn B
19 ovex G ~ QG K V
20 19 ecelqsi x B x G ~ QG K B / G ~ QG K
21 20 adantl φ x B x G ~ QG K B / G ~ QG K
22 4 a1i φ Q = G / 𝑠 G ~ QG K
23 6 a1i φ B = Base G
24 ovexd φ G ~ QG K V
25 reldmghm Rel dom GrpHom
26 25 ovrcl F G GrpHom H G V H V
27 26 simpld F G GrpHom H G V
28 2 27 syl φ G V
29 22 23 24 28 qusbas φ B / G ~ QG K = Base Q
30 29 adantr φ x B B / G ~ QG K = Base Q
31 21 30 eleqtrd φ x B x G ~ QG K Base Q
32 7 a1i φ L = x B x G ~ QG K
33 5 a1i φ J = q Base Q F q
34 imaeq2 q = x G ~ QG K F q = F x G ~ QG K
35 34 unieqd q = x G ~ QG K F q = F x G ~ QG K
36 31 32 33 35 fmptco φ J L = x B F x G ~ QG K
37 36 fneq1d φ J L Fn B x B F x G ~ QG K Fn B
38 18 37 mpbird φ J L Fn B
39 ecexg G ~ QG K V x G ~ QG K V
40 19 39 ax-mp x G ~ QG K V
41 40 7 fnmpti L Fn B
42 simpr φ x B x B
43 fvco2 L Fn B x B J L x = J L x
44 41 42 43 sylancr φ x B J L x = J L x
45 40 a1i φ x B x G ~ QG K V
46 32 45 fvmpt2d φ x B L x = x G ~ QG K
47 46 fveq2d φ x B J L x = J x G ~ QG K
48 42 6 eleqtrdi φ x B x Base G
49 1 12 3 4 5 48 ghmquskerlem1 φ x B J x G ~ QG K = F x
50 44 47 49 3eqtrrd φ x B F x = J L x
51 11 38 50 eqfnfvd φ F = J L