Metamath Proof Explorer


Theorem ghmquskerlem1

Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0 ˙ = 0 H
ghmqusker.f φ F G GrpHom H
ghmqusker.k K = F -1 0 ˙
ghmqusker.q Q = G / 𝑠 G ~ QG K
ghmqusker.j J = q Base Q F q
ghmquskerlem1.x φ X Base G
Assertion ghmquskerlem1 φ J X G ~ QG K = F X

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 ˙ = 0 H
2 ghmqusker.f φ F G GrpHom H
3 ghmqusker.k K = F -1 0 ˙
4 ghmqusker.q Q = G / 𝑠 G ~ QG K
5 ghmqusker.j J = q Base Q F q
6 ghmquskerlem1.x φ X Base G
7 imaeq2 q = X G ~ QG K F q = F X G ~ QG K
8 7 unieqd q = X G ~ QG K F q = F X G ~ QG K
9 ovex G ~ QG K V
10 9 ecelqsi X Base G X G ~ QG K Base G / G ~ QG K
11 6 10 syl φ X G ~ QG K Base G / G ~ QG K
12 4 a1i φ Q = G / 𝑠 G ~ QG K
13 eqidd φ Base G = Base G
14 ovexd φ G ~ QG K V
15 ghmgrp1 F G GrpHom H G Grp
16 2 15 syl φ G Grp
17 12 13 14 16 qusbas φ Base G / G ~ QG K = Base Q
18 11 17 eleqtrd φ X G ~ QG K Base Q
19 2 imaexd φ F X G ~ QG K V
20 19 uniexd φ F X G ~ QG K V
21 5 8 18 20 fvmptd3 φ J X G ~ QG K = F X G ~ QG K
22 eqid Base G = Base G
23 eqid Base H = Base H
24 22 23 ghmf F G GrpHom H F : Base G Base H
25 2 24 syl φ F : Base G Base H
26 25 ffnd φ F Fn Base G
27 1 ghmker F G GrpHom H F -1 0 ˙ NrmSGrp G
28 2 27 syl φ F -1 0 ˙ NrmSGrp G
29 3 28 eqeltrid φ K NrmSGrp G
30 nsgsubg K NrmSGrp G K SubGrp G
31 eqid G ~ QG K = G ~ QG K
32 22 31 eqger K SubGrp G G ~ QG K Er Base G
33 29 30 32 3syl φ G ~ QG K Er Base G
34 33 ecss φ X G ~ QG K Base G
35 26 34 fvelimabd φ y F X G ~ QG K z X G ~ QG K F z = y
36 simpr φ z X G ~ QG K F z = y F z = y
37 2 adantr φ z X G ~ QG K F G GrpHom H
38 eqid inv g G = inv g G
39 37 15 syl φ z X G ~ QG K G Grp
40 6 adantr φ z X G ~ QG K X Base G
41 22 38 39 40 grpinvcld φ z X G ~ QG K inv g G X Base G
42 34 sselda φ z X G ~ QG K z Base G
43 eqid + G = + G
44 eqid + H = + H
45 22 43 44 ghmlin F G GrpHom H inv g G X Base G z Base G F inv g G X + G z = F inv g G X + H F z
46 37 41 42 45 syl3anc φ z X G ~ QG K F inv g G X + G z = F inv g G X + H F z
47 26 adantr φ z X G ~ QG K F Fn Base G
48 22 subgss K SubGrp G K Base G
49 29 30 48 3syl φ K Base G
50 49 adantr φ z X G ~ QG K K Base G
51 vex z V
52 elecg z V X Base G z X G ~ QG K X G ~ QG K z
53 51 52 mpan X Base G z X G ~ QG K X G ~ QG K z
54 53 biimpa X Base G z X G ~ QG K X G ~ QG K z
55 6 54 sylan φ z X G ~ QG K X G ~ QG K z
56 22 38 43 31 eqgval G Grp K Base G X G ~ QG K z X Base G z Base G inv g G X + G z K
57 56 biimpa G Grp K Base G X G ~ QG K z X Base G z Base G inv g G X + G z K
58 57 simp3d G Grp K Base G X G ~ QG K z inv g G X + G z K
59 39 50 55 58 syl21anc φ z X G ~ QG K inv g G X + G z K
60 59 3 eleqtrdi φ z X G ~ QG K inv g G X + G z F -1 0 ˙
61 fniniseg F Fn Base G inv g G X + G z F -1 0 ˙ inv g G X + G z Base G F inv g G X + G z = 0 ˙
62 61 biimpa F Fn Base G inv g G X + G z F -1 0 ˙ inv g G X + G z Base G F inv g G X + G z = 0 ˙
63 47 60 62 syl2anc φ z X G ~ QG K inv g G X + G z Base G F inv g G X + G z = 0 ˙
64 63 simprd φ z X G ~ QG K F inv g G X + G z = 0 ˙
65 46 64 eqtr3d φ z X G ~ QG K F inv g G X + H F z = 0 ˙
66 65 oveq2d φ z X G ~ QG K F X + H F inv g G X + H F z = F X + H 0 ˙
67 eqid inv g H = inv g H
68 22 38 67 ghminv F G GrpHom H X Base G F inv g G X = inv g H F X
69 37 40 68 syl2anc φ z X G ~ QG K F inv g G X = inv g H F X
70 69 oveq1d φ z X G ~ QG K F inv g G X + H F z = inv g H F X + H F z
71 70 oveq2d φ z X G ~ QG K F X + H F inv g G X + H F z = F X + H inv g H F X + H F z
72 ghmgrp2 F G GrpHom H H Grp
73 37 72 syl φ z X G ~ QG K H Grp
74 37 24 syl φ z X G ~ QG K F : Base G Base H
75 74 40 ffvelcdmd φ z X G ~ QG K F X Base H
76 74 42 ffvelcdmd φ z X G ~ QG K F z Base H
77 23 44 67 grpasscan1 H Grp F X Base H F z Base H F X + H inv g H F X + H F z = F z
78 73 75 76 77 syl3anc φ z X G ~ QG K F X + H inv g H F X + H F z = F z
79 71 78 eqtrd φ z X G ~ QG K F X + H F inv g G X + H F z = F z
80 23 44 1 grprid H Grp F X Base H F X + H 0 ˙ = F X
81 73 75 80 syl2anc φ z X G ~ QG K F X + H 0 ˙ = F X
82 66 79 81 3eqtr3d φ z X G ~ QG K F z = F X
83 82 adantr φ z X G ~ QG K F z = y F z = F X
84 36 83 eqtr3d φ z X G ~ QG K F z = y y = F X
85 84 r19.29an φ z X G ~ QG K F z = y y = F X
86 ecref G ~ QG K Er Base G X Base G X X G ~ QG K
87 33 6 86 syl2anc φ X X G ~ QG K
88 87 adantr φ y = F X X X G ~ QG K
89 fveqeq2 z = X F z = y F X = y
90 89 adantl φ y = F X z = X F z = y F X = y
91 simpr φ y = F X y = F X
92 91 eqcomd φ y = F X F X = y
93 88 90 92 rspcedvd φ y = F X z X G ~ QG K F z = y
94 85 93 impbida φ z X G ~ QG K F z = y y = F X
95 velsn y F X y = F X
96 94 95 bitr4di φ z X G ~ QG K F z = y y F X
97 35 96 bitrd φ y F X G ~ QG K y F X
98 97 eqrdv φ F X G ~ QG K = F X
99 98 unieqd φ F X G ~ QG K = F X
100 fvex F X V
101 100 unisn F X = F X
102 99 101 eqtrdi φ F X G ~ QG K = F X
103 21 102 eqtrd φ J X G ~ QG K = F X