Metamath Proof Explorer


Theorem ghmquskerlem3

Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ghmqusker.1 0 ˙ = 0 H
ghmqusker.f φ F G GrpHom H
ghmqusker.k K = F -1 0 ˙
ghmqusker.q Q = G / 𝑠 G ~ QG K
ghmqusker.j J = q Base Q F q
Assertion ghmquskerlem3 φ J Q GrpHom H

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 ˙ = 0 H
2 ghmqusker.f φ F G GrpHom H
3 ghmqusker.k K = F -1 0 ˙
4 ghmqusker.q Q = G / 𝑠 G ~ QG K
5 ghmqusker.j J = q Base Q F q
6 eqid Base Q = Base Q
7 eqid Base H = Base H
8 eqid + Q = + Q
9 eqid + H = + H
10 1 ghmker F G GrpHom H F -1 0 ˙ NrmSGrp G
11 2 10 syl φ F -1 0 ˙ NrmSGrp G
12 3 11 eqeltrid φ K NrmSGrp G
13 4 qusgrp K NrmSGrp G Q Grp
14 12 13 syl φ Q Grp
15 ghmrn F G GrpHom H ran F SubGrp H
16 subgrcl ran F SubGrp H H Grp
17 2 15 16 3syl φ H Grp
18 2 adantr φ q Base Q F G GrpHom H
19 18 imaexd φ q Base Q F q V
20 19 uniexd φ q Base Q F q V
21 5 a1i φ J = q Base Q F q
22 simpr φ r Base Q x r J r = F x J r = F x
23 eqid Base G = Base G
24 23 7 ghmf F G GrpHom H F : Base G Base H
25 2 24 syl φ F : Base G Base H
26 25 frnd φ ran F Base H
27 26 ad3antrrr φ r Base Q x r J r = F x ran F Base H
28 25 ffnd φ F Fn Base G
29 28 ad3antrrr φ r Base Q x r J r = F x F Fn Base G
30 4 a1i φ Q = G / 𝑠 G ~ QG K
31 eqidd φ Base G = Base G
32 ovexd φ G ~ QG K V
33 ghmgrp1 F G GrpHom H G Grp
34 2 33 syl φ G Grp
35 30 31 32 34 qusbas φ Base G / G ~ QG K = Base Q
36 nsgsubg K NrmSGrp G K SubGrp G
37 eqid G ~ QG K = G ~ QG K
38 23 37 eqger K SubGrp G G ~ QG K Er Base G
39 12 36 38 3syl φ G ~ QG K Er Base G
40 39 qsss φ Base G / G ~ QG K 𝒫 Base G
41 35 40 eqsstrrd φ Base Q 𝒫 Base G
42 41 sselda φ r Base Q r 𝒫 Base G
43 42 elpwid φ r Base Q r Base G
44 43 sselda φ r Base Q x r x Base G
45 44 adantr φ r Base Q x r J r = F x x Base G
46 29 45 fnfvelrnd φ r Base Q x r J r = F x F x ran F
47 27 46 sseldd φ r Base Q x r J r = F x F x Base H
48 22 47 eqeltrd φ r Base Q x r J r = F x J r Base H
49 2 adantr φ r Base Q F G GrpHom H
50 simpr φ r Base Q r Base Q
51 1 49 3 4 5 50 ghmquskerlem2 φ r Base Q x r J r = F x
52 48 51 r19.29a φ r Base Q J r Base H
53 20 21 52 fmpt2d φ J : Base Q Base H
54 39 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G ~ QG K Er Base G
55 50 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base Q
56 35 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y Base G / G ~ QG K = Base Q
57 55 56 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G / G ~ QG K
58 simp-4r φ r Base Q s Base Q x r J r = F x y s J s = F y x r
59 qsel G ~ QG K Er Base G r Base G / G ~ QG K x r r = x G ~ QG K
60 54 57 58 59 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y r = x G ~ QG K
61 simp-5r φ r Base Q s Base Q x r J r = F x y s J s = F y s Base Q
62 61 56 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G / G ~ QG K
63 simplr φ r Base Q s Base Q x r J r = F x y s J s = F y y s
64 qsel G ~ QG K Er Base G s Base G / G ~ QG K y s s = y G ~ QG K
65 54 62 63 64 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y s = y G ~ QG K
66 60 65 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y r + Q s = x G ~ QG K + Q y G ~ QG K
67 12 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y K NrmSGrp G
68 43 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G
69 68 58 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y x Base G
70 41 sselda φ s Base Q s 𝒫 Base G
71 70 elpwid φ s Base Q s Base G
72 71 adantlr φ r Base Q s Base Q s Base G
73 72 ad4antr φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G
74 73 63 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y y Base G
75 eqid + G = + G
76 4 23 75 8 qusadd K NrmSGrp G x Base G y Base G x G ~ QG K + Q y G ~ QG K = x + G y G ~ QG K
77 67 69 74 76 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y x G ~ QG K + Q y G ~ QG K = x + G y G ~ QG K
78 66 77 eqtrd φ r Base Q s Base Q x r J r = F x y s J s = F y r + Q s = x + G y G ~ QG K
79 78 fveq2d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = J x + G y G ~ QG K
80 2 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y F G GrpHom H
81 80 33 syl φ r Base Q s Base Q x r J r = F x y s J s = F y G Grp
82 23 75 81 69 74 grpcld φ r Base Q s Base Q x r J r = F x y s J s = F y x + G y Base G
83 1 80 3 4 5 82 ghmquskerlem1 φ r Base Q s Base Q x r J r = F x y s J s = F y J x + G y G ~ QG K = F x + G y
84 23 75 9 ghmlin F G GrpHom H x Base G y Base G F x + G y = F x + H F y
85 80 69 74 84 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y F x + G y = F x + H F y
86 79 83 85 3eqtrd φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = F x + H F y
87 simpllr φ r Base Q s Base Q x r J r = F x y s J s = F y J r = F x
88 simpr φ r Base Q s Base Q x r J r = F x y s J s = F y J s = F y
89 87 88 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + H J s = F x + H F y
90 86 89 eqtr4d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = J r + H J s
91 2 ad4antr φ r Base Q s Base Q x r J r = F x F G GrpHom H
92 simpllr φ r Base Q s Base Q x r J r = F x s Base Q
93 1 91 3 4 5 92 ghmquskerlem2 φ r Base Q s Base Q x r J r = F x y s J s = F y
94 90 93 r19.29a φ r Base Q s Base Q x r J r = F x J r + Q s = J r + H J s
95 51 adantr φ r Base Q s Base Q x r J r = F x
96 94 95 r19.29a φ r Base Q s Base Q J r + Q s = J r + H J s
97 96 anasss φ r Base Q s Base Q J r + Q s = J r + H J s
98 6 7 8 9 14 17 53 97 isghmd φ J Q GrpHom H