Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|
2 |
|
ghmqusker.f |
|
3 |
|
ghmqusker.k |
|
4 |
|
ghmqusker.q |
|
5 |
|
ghmqusker.j |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1
|
ghmker |
|
11 |
2 10
|
syl |
|
12 |
3 11
|
eqeltrid |
|
13 |
4
|
qusgrp |
|
14 |
12 13
|
syl |
|
15 |
|
ghmrn |
|
16 |
|
subgrcl |
|
17 |
2 15 16
|
3syl |
|
18 |
2
|
adantr |
|
19 |
18
|
imaexd |
|
20 |
19
|
uniexd |
|
21 |
5
|
a1i |
|
22 |
|
simpr |
|
23 |
|
eqid |
|
24 |
23 7
|
ghmf |
|
25 |
2 24
|
syl |
|
26 |
25
|
frnd |
|
27 |
26
|
ad3antrrr |
|
28 |
25
|
ffnd |
|
29 |
28
|
ad3antrrr |
|
30 |
4
|
a1i |
|
31 |
|
eqidd |
|
32 |
|
ovexd |
|
33 |
|
ghmgrp1 |
|
34 |
2 33
|
syl |
|
35 |
30 31 32 34
|
qusbas |
|
36 |
|
nsgsubg |
|
37 |
|
eqid |
|
38 |
23 37
|
eqger |
|
39 |
12 36 38
|
3syl |
|
40 |
39
|
qsss |
|
41 |
35 40
|
eqsstrrd |
|
42 |
41
|
sselda |
|
43 |
42
|
elpwid |
|
44 |
43
|
sselda |
|
45 |
44
|
adantr |
|
46 |
29 45
|
fnfvelrnd |
|
47 |
27 46
|
sseldd |
|
48 |
22 47
|
eqeltrd |
|
49 |
2
|
adantr |
|
50 |
|
simpr |
|
51 |
1 49 3 4 5 50
|
ghmquskerlem2 |
|
52 |
48 51
|
r19.29a |
|
53 |
20 21 52
|
fmpt2d |
|
54 |
39
|
ad6antr |
|
55 |
50
|
ad5antr |
|
56 |
35
|
ad6antr |
|
57 |
55 56
|
eleqtrrd |
|
58 |
|
simp-4r |
|
59 |
|
qsel |
|
60 |
54 57 58 59
|
syl3anc |
|
61 |
|
simp-5r |
|
62 |
61 56
|
eleqtrrd |
|
63 |
|
simplr |
|
64 |
|
qsel |
|
65 |
54 62 63 64
|
syl3anc |
|
66 |
60 65
|
oveq12d |
|
67 |
12
|
ad6antr |
|
68 |
43
|
ad5antr |
|
69 |
68 58
|
sseldd |
|
70 |
41
|
sselda |
|
71 |
70
|
elpwid |
|
72 |
71
|
adantlr |
|
73 |
72
|
ad4antr |
|
74 |
73 63
|
sseldd |
|
75 |
|
eqid |
|
76 |
4 23 75 8
|
qusadd |
|
77 |
67 69 74 76
|
syl3anc |
|
78 |
66 77
|
eqtrd |
|
79 |
78
|
fveq2d |
|
80 |
2
|
ad6antr |
|
81 |
80 33
|
syl |
|
82 |
23 75 81 69 74
|
grpcld |
|
83 |
1 80 3 4 5 82
|
ghmquskerlem1 |
|
84 |
23 75 9
|
ghmlin |
|
85 |
80 69 74 84
|
syl3anc |
|
86 |
79 83 85
|
3eqtrd |
|
87 |
|
simpllr |
|
88 |
|
simpr |
|
89 |
87 88
|
oveq12d |
|
90 |
86 89
|
eqtr4d |
|
91 |
2
|
ad4antr |
|
92 |
|
simpllr |
|
93 |
1 91 3 4 5 92
|
ghmquskerlem2 |
|
94 |
90 93
|
r19.29a |
|
95 |
51
|
adantr |
|
96 |
94 95
|
r19.29a |
|
97 |
96
|
anasss |
|
98 |
6 7 8 9 14 17 53 97
|
isghmd |
|