Metamath Proof Explorer


Theorem ghmqusnsg

Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over a normal subgroup N of F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 ˙ = 0 H
ghmqusnsg.f φ F G GrpHom H
ghmqusnsg.k K = F -1 0 ˙
ghmqusnsg.q Q = G / 𝑠 G ~ QG N
ghmqusnsg.j J = q Base Q F q
ghmqusnsg.n φ N K
ghmqusnsg.1 φ N NrmSGrp G
Assertion ghmqusnsg φ J Q GrpHom H

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 ˙ = 0 H
2 ghmqusnsg.f φ F G GrpHom H
3 ghmqusnsg.k K = F -1 0 ˙
4 ghmqusnsg.q Q = G / 𝑠 G ~ QG N
5 ghmqusnsg.j J = q Base Q F q
6 ghmqusnsg.n φ N K
7 ghmqusnsg.1 φ N NrmSGrp G
8 eqid Base Q = Base Q
9 eqid Base H = Base H
10 eqid + Q = + Q
11 eqid + H = + H
12 4 qusgrp N NrmSGrp G Q Grp
13 7 12 syl φ Q Grp
14 ghmrn F G GrpHom H ran F SubGrp H
15 subgrcl ran F SubGrp H H Grp
16 2 14 15 3syl φ H Grp
17 2 adantr φ q Base Q F G GrpHom H
18 17 imaexd φ q Base Q F q V
19 18 uniexd φ q Base Q F q V
20 5 a1i φ J = q Base Q F q
21 simpr φ r Base Q x r J r = F x J r = F x
22 eqid Base G = Base G
23 22 9 ghmf F G GrpHom H F : Base G Base H
24 2 23 syl φ F : Base G Base H
25 24 frnd φ ran F Base H
26 25 ad3antrrr φ r Base Q x r J r = F x ran F Base H
27 24 ffnd φ F Fn Base G
28 27 ad3antrrr φ r Base Q x r J r = F x F Fn Base G
29 4 a1i φ Q = G / 𝑠 G ~ QG N
30 eqidd φ Base G = Base G
31 ovexd φ G ~ QG N V
32 ghmgrp1 F G GrpHom H G Grp
33 2 32 syl φ G Grp
34 29 30 31 33 qusbas φ Base G / G ~ QG N = Base Q
35 nsgsubg N NrmSGrp G N SubGrp G
36 eqid G ~ QG N = G ~ QG N
37 22 36 eqger N SubGrp G G ~ QG N Er Base G
38 7 35 37 3syl φ G ~ QG N Er Base G
39 38 qsss φ Base G / G ~ QG N 𝒫 Base G
40 34 39 eqsstrrd φ Base Q 𝒫 Base G
41 40 sselda φ r Base Q r 𝒫 Base G
42 41 elpwid φ r Base Q r Base G
43 42 sselda φ r Base Q x r x Base G
44 43 adantr φ r Base Q x r J r = F x x Base G
45 28 44 fnfvelrnd φ r Base Q x r J r = F x F x ran F
46 26 45 sseldd φ r Base Q x r J r = F x F x Base H
47 21 46 eqeltrd φ r Base Q x r J r = F x J r Base H
48 2 adantr φ r Base Q F G GrpHom H
49 6 adantr φ r Base Q N K
50 7 adantr φ r Base Q N NrmSGrp G
51 simpr φ r Base Q r Base Q
52 1 48 3 4 5 49 50 51 ghmqusnsglem2 φ r Base Q x r J r = F x
53 47 52 r19.29a φ r Base Q J r Base H
54 19 20 53 fmpt2d φ J : Base Q Base H
55 38 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y G ~ QG N Er Base G
56 51 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base Q
57 34 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y Base G / G ~ QG N = Base Q
58 56 57 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G / G ~ QG N
59 simp-4r φ r Base Q s Base Q x r J r = F x y s J s = F y x r
60 qsel G ~ QG N Er Base G r Base G / G ~ QG N x r r = x G ~ QG N
61 55 58 59 60 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y r = x G ~ QG N
62 simp-5r φ r Base Q s Base Q x r J r = F x y s J s = F y s Base Q
63 62 57 eleqtrrd φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G / G ~ QG N
64 simplr φ r Base Q s Base Q x r J r = F x y s J s = F y y s
65 qsel G ~ QG N Er Base G s Base G / G ~ QG N y s s = y G ~ QG N
66 55 63 64 65 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y s = y G ~ QG N
67 61 66 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y r + Q s = x G ~ QG N + Q y G ~ QG N
68 7 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y N NrmSGrp G
69 42 ad5antr φ r Base Q s Base Q x r J r = F x y s J s = F y r Base G
70 69 59 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y x Base G
71 40 sselda φ s Base Q s 𝒫 Base G
72 71 elpwid φ s Base Q s Base G
73 72 adantlr φ r Base Q s Base Q s Base G
74 73 ad4antr φ r Base Q s Base Q x r J r = F x y s J s = F y s Base G
75 74 64 sseldd φ r Base Q s Base Q x r J r = F x y s J s = F y y Base G
76 eqid + G = + G
77 4 22 76 10 qusadd N NrmSGrp G x Base G y Base G x G ~ QG N + Q y G ~ QG N = x + G y G ~ QG N
78 68 70 75 77 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y x G ~ QG N + Q y G ~ QG N = x + G y G ~ QG N
79 67 78 eqtrd φ r Base Q s Base Q x r J r = F x y s J s = F y r + Q s = x + G y G ~ QG N
80 79 fveq2d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = J x + G y G ~ QG N
81 2 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y F G GrpHom H
82 6 ad6antr φ r Base Q s Base Q x r J r = F x y s J s = F y N K
83 81 32 syl φ r Base Q s Base Q x r J r = F x y s J s = F y G Grp
84 22 76 83 70 75 grpcld φ r Base Q s Base Q x r J r = F x y s J s = F y x + G y Base G
85 1 81 3 4 5 82 68 84 ghmqusnsglem1 φ r Base Q s Base Q x r J r = F x y s J s = F y J x + G y G ~ QG N = F x + G y
86 22 76 11 ghmlin F G GrpHom H x Base G y Base G F x + G y = F x + H F y
87 81 70 75 86 syl3anc φ r Base Q s Base Q x r J r = F x y s J s = F y F x + G y = F x + H F y
88 80 85 87 3eqtrd φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = F x + H F y
89 simpllr φ r Base Q s Base Q x r J r = F x y s J s = F y J r = F x
90 simpr φ r Base Q s Base Q x r J r = F x y s J s = F y J s = F y
91 89 90 oveq12d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + H J s = F x + H F y
92 88 91 eqtr4d φ r Base Q s Base Q x r J r = F x y s J s = F y J r + Q s = J r + H J s
93 2 ad4antr φ r Base Q s Base Q x r J r = F x F G GrpHom H
94 6 ad4antr φ r Base Q s Base Q x r J r = F x N K
95 7 ad4antr φ r Base Q s Base Q x r J r = F x N NrmSGrp G
96 simpllr φ r Base Q s Base Q x r J r = F x s Base Q
97 1 93 3 4 5 94 95 96 ghmqusnsglem2 φ r Base Q s Base Q x r J r = F x y s J s = F y
98 92 97 r19.29a φ r Base Q s Base Q x r J r = F x J r + Q s = J r + H J s
99 52 adantr φ r Base Q s Base Q x r J r = F x
100 98 99 r19.29a φ r Base Q s Base Q J r + Q s = J r + H J s
101 100 anasss φ r Base Q s Base Q J r + Q s = J r + H J s
102 8 9 10 11 13 16 54 101 isghmd φ J Q GrpHom H