Metamath Proof Explorer


Theorem ghmqusnsglem1

Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 ˙ = 0 H
ghmqusnsg.f φ F G GrpHom H
ghmqusnsg.k K = F -1 0 ˙
ghmqusnsg.q Q = G / 𝑠 G ~ QG N
ghmqusnsg.j J = q Base Q F q
ghmqusnsg.n φ N K
ghmqusnsg.1 φ N NrmSGrp G
ghmqusnsglem1.x φ X Base G
Assertion ghmqusnsglem1 φ J X G ~ QG N = F X

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 ˙ = 0 H
2 ghmqusnsg.f φ F G GrpHom H
3 ghmqusnsg.k K = F -1 0 ˙
4 ghmqusnsg.q Q = G / 𝑠 G ~ QG N
5 ghmqusnsg.j J = q Base Q F q
6 ghmqusnsg.n φ N K
7 ghmqusnsg.1 φ N NrmSGrp G
8 ghmqusnsglem1.x φ X Base G
9 imaeq2 q = X G ~ QG N F q = F X G ~ QG N
10 9 unieqd q = X G ~ QG N F q = F X G ~ QG N
11 ovex G ~ QG N V
12 11 ecelqsi X Base G X G ~ QG N Base G / G ~ QG N
13 8 12 syl φ X G ~ QG N Base G / G ~ QG N
14 4 a1i φ Q = G / 𝑠 G ~ QG N
15 eqidd φ Base G = Base G
16 ovexd φ G ~ QG N V
17 ghmgrp1 F G GrpHom H G Grp
18 2 17 syl φ G Grp
19 14 15 16 18 qusbas φ Base G / G ~ QG N = Base Q
20 13 19 eleqtrd φ X G ~ QG N Base Q
21 2 imaexd φ F X G ~ QG N V
22 21 uniexd φ F X G ~ QG N V
23 5 10 20 22 fvmptd3 φ J X G ~ QG N = F X G ~ QG N
24 eqid Base G = Base G
25 eqid Base H = Base H
26 24 25 ghmf F G GrpHom H F : Base G Base H
27 2 26 syl φ F : Base G Base H
28 27 ffnd φ F Fn Base G
29 nsgsubg N NrmSGrp G N SubGrp G
30 eqid G ~ QG N = G ~ QG N
31 24 30 eqger N SubGrp G G ~ QG N Er Base G
32 7 29 31 3syl φ G ~ QG N Er Base G
33 32 ecss φ X G ~ QG N Base G
34 28 33 fvelimabd φ y F X G ~ QG N z X G ~ QG N F z = y
35 simpr φ z X G ~ QG N F z = y F z = y
36 2 adantr φ z X G ~ QG N F G GrpHom H
37 eqid inv g G = inv g G
38 36 17 syl φ z X G ~ QG N G Grp
39 8 adantr φ z X G ~ QG N X Base G
40 24 37 38 39 grpinvcld φ z X G ~ QG N inv g G X Base G
41 33 sselda φ z X G ~ QG N z Base G
42 eqid + G = + G
43 eqid + H = + H
44 24 42 43 ghmlin F G GrpHom H inv g G X Base G z Base G F inv g G X + G z = F inv g G X + H F z
45 36 40 41 44 syl3anc φ z X G ~ QG N F inv g G X + G z = F inv g G X + H F z
46 28 adantr φ z X G ~ QG N F Fn Base G
47 6 3 sseqtrdi φ N F -1 0 ˙
48 47 adantr φ z X G ~ QG N N F -1 0 ˙
49 24 subgss N SubGrp G N Base G
50 7 29 49 3syl φ N Base G
51 50 adantr φ z X G ~ QG N N Base G
52 vex z V
53 elecg z V X Base G z X G ~ QG N X G ~ QG N z
54 52 53 mpan X Base G z X G ~ QG N X G ~ QG N z
55 54 biimpa X Base G z X G ~ QG N X G ~ QG N z
56 8 55 sylan φ z X G ~ QG N X G ~ QG N z
57 24 37 42 30 eqgval G Grp N Base G X G ~ QG N z X Base G z Base G inv g G X + G z N
58 57 biimpa G Grp N Base G X G ~ QG N z X Base G z Base G inv g G X + G z N
59 58 simp3d G Grp N Base G X G ~ QG N z inv g G X + G z N
60 38 51 56 59 syl21anc φ z X G ~ QG N inv g G X + G z N
61 48 60 sseldd φ z X G ~ QG N inv g G X + G z F -1 0 ˙
62 fniniseg F Fn Base G inv g G X + G z F -1 0 ˙ inv g G X + G z Base G F inv g G X + G z = 0 ˙
63 62 biimpa F Fn Base G inv g G X + G z F -1 0 ˙ inv g G X + G z Base G F inv g G X + G z = 0 ˙
64 46 61 63 syl2anc φ z X G ~ QG N inv g G X + G z Base G F inv g G X + G z = 0 ˙
65 64 simprd φ z X G ~ QG N F inv g G X + G z = 0 ˙
66 45 65 eqtr3d φ z X G ~ QG N F inv g G X + H F z = 0 ˙
67 66 oveq2d φ z X G ~ QG N F X + H F inv g G X + H F z = F X + H 0 ˙
68 eqid inv g H = inv g H
69 24 37 68 ghminv F G GrpHom H X Base G F inv g G X = inv g H F X
70 36 39 69 syl2anc φ z X G ~ QG N F inv g G X = inv g H F X
71 70 oveq1d φ z X G ~ QG N F inv g G X + H F z = inv g H F X + H F z
72 71 oveq2d φ z X G ~ QG N F X + H F inv g G X + H F z = F X + H inv g H F X + H F z
73 ghmgrp2 F G GrpHom H H Grp
74 36 73 syl φ z X G ~ QG N H Grp
75 36 26 syl φ z X G ~ QG N F : Base G Base H
76 75 39 ffvelcdmd φ z X G ~ QG N F X Base H
77 75 41 ffvelcdmd φ z X G ~ QG N F z Base H
78 25 43 68 grpasscan1 H Grp F X Base H F z Base H F X + H inv g H F X + H F z = F z
79 74 76 77 78 syl3anc φ z X G ~ QG N F X + H inv g H F X + H F z = F z
80 72 79 eqtrd φ z X G ~ QG N F X + H F inv g G X + H F z = F z
81 25 43 1 74 76 grpridd φ z X G ~ QG N F X + H 0 ˙ = F X
82 67 80 81 3eqtr3d φ z X G ~ QG N F z = F X
83 82 adantr φ z X G ~ QG N F z = y F z = F X
84 35 83 eqtr3d φ z X G ~ QG N F z = y y = F X
85 84 r19.29an φ z X G ~ QG N F z = y y = F X
86 fveqeq2 z = X F z = y F X = y
87 ecref G ~ QG N Er Base G X Base G X X G ~ QG N
88 32 8 87 syl2anc φ X X G ~ QG N
89 88 adantr φ y = F X X X G ~ QG N
90 simpr φ y = F X y = F X
91 90 eqcomd φ y = F X F X = y
92 86 89 91 rspcedvdw φ y = F X z X G ~ QG N F z = y
93 85 92 impbida φ z X G ~ QG N F z = y y = F X
94 velsn y F X y = F X
95 93 94 bitr4di φ z X G ~ QG N F z = y y F X
96 34 95 bitrd φ y F X G ~ QG N y F X
97 96 eqrdv φ F X G ~ QG N = F X
98 97 unieqd φ F X G ~ QG N = F X
99 fvex F X V
100 99 unisn F X = F X
101 98 100 eqtrdi φ F X G ~ QG N = F X
102 23 101 eqtrd φ J X G ~ QG N = F X