Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusnsg.0 |
|
2 |
|
ghmqusnsg.f |
|
3 |
|
ghmqusnsg.k |
|
4 |
|
ghmqusnsg.q |
|
5 |
|
ghmqusnsg.j |
|
6 |
|
ghmqusnsg.n |
|
7 |
|
ghmqusnsg.1 |
|
8 |
|
ghmqusnsglem2.y |
|
9 |
4
|
a1i |
|
10 |
|
eqidd |
|
11 |
|
ovexd |
|
12 |
|
ghmgrp1 |
|
13 |
2 12
|
syl |
|
14 |
9 10 11 13
|
qusbas |
|
15 |
8 14
|
eleqtrrd |
|
16 |
|
elqsg |
|
17 |
16
|
biimpa |
|
18 |
8 15 17
|
syl2anc |
|
19 |
|
nsgsubg |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21
|
eqger |
|
23 |
7 19 22
|
3syl |
|
24 |
23
|
ad2antrr |
|
25 |
|
simplr |
|
26 |
|
ecref |
|
27 |
24 25 26
|
syl2anc |
|
28 |
|
simpr |
|
29 |
27 28
|
eleqtrrd |
|
30 |
28
|
fveq2d |
|
31 |
2
|
ad2antrr |
|
32 |
6
|
ad2antrr |
|
33 |
7
|
ad2antrr |
|
34 |
1 31 3 4 5 32 33 25
|
ghmqusnsglem1 |
|
35 |
30 34
|
eqtrd |
|
36 |
29 35
|
jca |
|
37 |
36
|
expl |
|
38 |
37
|
reximdv2 |
|
39 |
18 38
|
mpd |
|