Metamath Proof Explorer


Theorem ghmqusnsglem2

Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 ˙ = 0 H
ghmqusnsg.f φ F G GrpHom H
ghmqusnsg.k K = F -1 0 ˙
ghmqusnsg.q Q = G / 𝑠 G ~ QG N
ghmqusnsg.j J = q Base Q F q
ghmqusnsg.n φ N K
ghmqusnsg.1 φ N NrmSGrp G
ghmqusnsglem2.y φ Y Base Q
Assertion ghmqusnsglem2 φ x Y J Y = F x

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 ˙ = 0 H
2 ghmqusnsg.f φ F G GrpHom H
3 ghmqusnsg.k K = F -1 0 ˙
4 ghmqusnsg.q Q = G / 𝑠 G ~ QG N
5 ghmqusnsg.j J = q Base Q F q
6 ghmqusnsg.n φ N K
7 ghmqusnsg.1 φ N NrmSGrp G
8 ghmqusnsglem2.y φ Y Base Q
9 4 a1i φ Q = G / 𝑠 G ~ QG N
10 eqidd φ Base G = Base G
11 ovexd φ G ~ QG N V
12 ghmgrp1 F G GrpHom H G Grp
13 2 12 syl φ G Grp
14 9 10 11 13 qusbas φ Base G / G ~ QG N = Base Q
15 8 14 eleqtrrd φ Y Base G / G ~ QG N
16 elqsg Y Base Q Y Base G / G ~ QG N x Base G Y = x G ~ QG N
17 16 biimpa Y Base Q Y Base G / G ~ QG N x Base G Y = x G ~ QG N
18 8 15 17 syl2anc φ x Base G Y = x G ~ QG N
19 nsgsubg N NrmSGrp G N SubGrp G
20 eqid Base G = Base G
21 eqid G ~ QG N = G ~ QG N
22 20 21 eqger N SubGrp G G ~ QG N Er Base G
23 7 19 22 3syl φ G ~ QG N Er Base G
24 23 ad2antrr φ x Base G Y = x G ~ QG N G ~ QG N Er Base G
25 simplr φ x Base G Y = x G ~ QG N x Base G
26 ecref G ~ QG N Er Base G x Base G x x G ~ QG N
27 24 25 26 syl2anc φ x Base G Y = x G ~ QG N x x G ~ QG N
28 simpr φ x Base G Y = x G ~ QG N Y = x G ~ QG N
29 27 28 eleqtrrd φ x Base G Y = x G ~ QG N x Y
30 28 fveq2d φ x Base G Y = x G ~ QG N J Y = J x G ~ QG N
31 2 ad2antrr φ x Base G Y = x G ~ QG N F G GrpHom H
32 6 ad2antrr φ x Base G Y = x G ~ QG N N K
33 7 ad2antrr φ x Base G Y = x G ~ QG N N NrmSGrp G
34 1 31 3 4 5 32 33 25 ghmqusnsglem1 φ x Base G Y = x G ~ QG N J x G ~ QG N = F x
35 30 34 eqtrd φ x Base G Y = x G ~ QG N J Y = F x
36 29 35 jca φ x Base G Y = x G ~ QG N x Y J Y = F x
37 36 expl φ x Base G Y = x G ~ QG N x Y J Y = F x
38 37 reximdv2 φ x Base G Y = x G ~ QG N x Y J Y = F x
39 18 38 mpd φ x Y J Y = F x