Metamath Proof Explorer


Theorem ghmsub

Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmsub.b B = Base S
ghmsub.m - ˙ = - S
ghmsub.n N = - T
Assertion ghmsub F S GrpHom T U B V B F U - ˙ V = F U N F V

Proof

Step Hyp Ref Expression
1 ghmsub.b B = Base S
2 ghmsub.m - ˙ = - S
3 ghmsub.n N = - T
4 ghmgrp1 F S GrpHom T S Grp
5 4 3ad2ant1 F S GrpHom T U B V B S Grp
6 simp3 F S GrpHom T U B V B V B
7 eqid inv g S = inv g S
8 1 7 grpinvcl S Grp V B inv g S V B
9 5 6 8 syl2anc F S GrpHom T U B V B inv g S V B
10 eqid + S = + S
11 eqid + T = + T
12 1 10 11 ghmlin F S GrpHom T U B inv g S V B F U + S inv g S V = F U + T F inv g S V
13 9 12 syld3an3 F S GrpHom T U B V B F U + S inv g S V = F U + T F inv g S V
14 eqid inv g T = inv g T
15 1 7 14 ghminv F S GrpHom T V B F inv g S V = inv g T F V
16 15 3adant2 F S GrpHom T U B V B F inv g S V = inv g T F V
17 16 oveq2d F S GrpHom T U B V B F U + T F inv g S V = F U + T inv g T F V
18 13 17 eqtrd F S GrpHom T U B V B F U + S inv g S V = F U + T inv g T F V
19 1 10 7 2 grpsubval U B V B U - ˙ V = U + S inv g S V
20 19 fveq2d U B V B F U - ˙ V = F U + S inv g S V
21 20 3adant1 F S GrpHom T U B V B F U - ˙ V = F U + S inv g S V
22 eqid Base T = Base T
23 1 22 ghmf F S GrpHom T F : B Base T
24 ffvelrn F : B Base T U B F U Base T
25 ffvelrn F : B Base T V B F V Base T
26 24 25 anim12dan F : B Base T U B V B F U Base T F V Base T
27 23 26 sylan F S GrpHom T U B V B F U Base T F V Base T
28 27 3impb F S GrpHom T U B V B F U Base T F V Base T
29 22 11 14 3 grpsubval F U Base T F V Base T F U N F V = F U + T inv g T F V
30 28 29 syl F S GrpHom T U B V B F U N F V = F U + T inv g T F V
31 18 21 30 3eqtr4d F S GrpHom T U B V B F U - ˙ V = F U N F V