Metamath Proof Explorer


Theorem ghomdiv

Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses ghomdiv.1 X = ran G
ghomdiv.2 D = / g G
ghomdiv.3 C = / g H
Assertion ghomdiv G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B = F A C F B

Proof

Step Hyp Ref Expression
1 ghomdiv.1 X = ran G
2 ghomdiv.2 D = / g G
3 ghomdiv.3 C = / g H
4 simpl2 G GrpOp H GrpOp F G GrpOpHom H A X B X H GrpOp
5 eqid ran H = ran H
6 1 5 ghomf G GrpOp H GrpOp F G GrpOpHom H F : X ran H
7 6 ffvelrnda G GrpOp H GrpOp F G GrpOpHom H A X F A ran H
8 7 adantrr G GrpOp H GrpOp F G GrpOpHom H A X B X F A ran H
9 6 ffvelrnda G GrpOp H GrpOp F G GrpOpHom H B X F B ran H
10 9 adantrl G GrpOp H GrpOp F G GrpOpHom H A X B X F B ran H
11 5 3 grponpcan H GrpOp F A ran H F B ran H F A C F B H F B = F A
12 4 8 10 11 syl3anc G GrpOp H GrpOp F G GrpOpHom H A X B X F A C F B H F B = F A
13 1 2 grponpcan G GrpOp A X B X A D B G B = A
14 13 3expb G GrpOp A X B X A D B G B = A
15 14 3ad2antl1 G GrpOp H GrpOp F G GrpOpHom H A X B X A D B G B = A
16 15 fveq2d G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B G B = F A
17 1 2 grpodivcl G GrpOp A X B X A D B X
18 17 3expb G GrpOp A X B X A D B X
19 simprr G GrpOp A X B X B X
20 18 19 jca G GrpOp A X B X A D B X B X
21 20 3ad2antl1 G GrpOp H GrpOp F G GrpOpHom H A X B X A D B X B X
22 1 ghomlinOLD G GrpOp H GrpOp F G GrpOpHom H A D B X B X F A D B H F B = F A D B G B
23 22 eqcomd G GrpOp H GrpOp F G GrpOpHom H A D B X B X F A D B G B = F A D B H F B
24 21 23 syldan G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B G B = F A D B H F B
25 12 16 24 3eqtr2rd G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B H F B = F A C F B H F B
26 18 3ad2antl1 G GrpOp H GrpOp F G GrpOpHom H A X B X A D B X
27 6 ffvelrnda G GrpOp H GrpOp F G GrpOpHom H A D B X F A D B ran H
28 26 27 syldan G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B ran H
29 5 3 grpodivcl H GrpOp F A ran H F B ran H F A C F B ran H
30 4 8 10 29 syl3anc G GrpOp H GrpOp F G GrpOpHom H A X B X F A C F B ran H
31 5 grporcan H GrpOp F A D B ran H F A C F B ran H F B ran H F A D B H F B = F A C F B H F B F A D B = F A C F B
32 4 28 30 10 31 syl13anc G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B H F B = F A C F B H F B F A D B = F A C F B
33 25 32 mpbid G GrpOp H GrpOp F G GrpOpHom H A X B X F A D B = F A C F B