Metamath Proof Explorer


Theorem ghomf

Description: Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses ghomf.1 X = ran G
ghomf.2 W = ran H
Assertion ghomf G GrpOp H GrpOp F G GrpOpHom H F : X W

Proof

Step Hyp Ref Expression
1 ghomf.1 X = ran G
2 ghomf.2 W = ran H
3 1 2 elghomOLD G GrpOp H GrpOp F G GrpOpHom H F : X W x X y X F x H F y = F x G y
4 3 simprbda G GrpOp H GrpOp F G GrpOpHom H F : X W
5 4 3impa G GrpOp H GrpOp F G GrpOpHom H F : X W