Metamath Proof Explorer


Theorem ghomlinOLD

Description: Obsolete version of ghmlin as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ghomlinOLD.1 X = ran G
Assertion ghomlinOLD G GrpOp H GrpOp F G GrpOpHom H A X B X F A H F B = F A G B

Proof

Step Hyp Ref Expression
1 ghomlinOLD.1 X = ran G
2 eqid ran H = ran H
3 1 2 elghomOLD G GrpOp H GrpOp F G GrpOpHom H F : X ran H x X y X F x H F y = F x G y
4 3 biimp3a G GrpOp H GrpOp F G GrpOpHom H F : X ran H x X y X F x H F y = F x G y
5 4 simprd G GrpOp H GrpOp F G GrpOpHom H x X y X F x H F y = F x G y
6 fveq2 x = A F x = F A
7 6 oveq1d x = A F x H F y = F A H F y
8 oveq1 x = A x G y = A G y
9 8 fveq2d x = A F x G y = F A G y
10 7 9 eqeq12d x = A F x H F y = F x G y F A H F y = F A G y
11 fveq2 y = B F y = F B
12 11 oveq2d y = B F A H F y = F A H F B
13 oveq2 y = B A G y = A G B
14 13 fveq2d y = B F A G y = F A G B
15 12 14 eqeq12d y = B F A H F y = F A G y F A H F B = F A G B
16 10 15 rspc2v A X B X x X y X F x H F y = F x G y F A H F B = F A G B
17 5 16 mpan9 G GrpOp H GrpOp F G GrpOpHom H A X B X F A H F B = F A G B