Metamath Proof Explorer


Theorem giccyg

Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion giccyg G 𝑔 H G CycGrp H CycGrp

Proof

Step Hyp Ref Expression
1 brgic G 𝑔 H G GrpIso H
2 n0 G GrpIso H f f G GrpIso H
3 gimghm f G GrpIso H f G GrpHom H
4 eqid Base G = Base G
5 eqid Base H = Base H
6 4 5 gimf1o f G GrpIso H f : Base G 1-1 onto Base H
7 f1ofo f : Base G 1-1 onto Base H f : Base G onto Base H
8 6 7 syl f G GrpIso H f : Base G onto Base H
9 4 5 ghmcyg f G GrpHom H f : Base G onto Base H G CycGrp H CycGrp
10 3 8 9 syl2anc f G GrpIso H G CycGrp H CycGrp
11 10 exlimiv f f G GrpIso H G CycGrp H CycGrp
12 2 11 sylbi G GrpIso H G CycGrp H CycGrp
13 1 12 sylbi G 𝑔 H G CycGrp H CycGrp