Metamath Proof Explorer


Theorem gicen

Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses gicen.b B = Base R
gicen.c C = Base S
Assertion gicen R 𝑔 S B C

Proof

Step Hyp Ref Expression
1 gicen.b B = Base R
2 gicen.c C = Base S
3 brgic R 𝑔 S R GrpIso S
4 n0 R GrpIso S f f R GrpIso S
5 1 2 gimf1o f R GrpIso S f : B 1-1 onto C
6 1 fvexi B V
7 6 f1oen f : B 1-1 onto C B C
8 5 7 syl f R GrpIso S B C
9 8 exlimiv f f R GrpIso S B C
10 4 9 sylbi R GrpIso S B C
11 3 10 sylbi R 𝑔 S B C