Metamath Proof Explorer


Theorem gicqusker

Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses gicqusker.1 0 ˙ = 0 H
gicqusker.f φ F G GrpHom H
gicqusker.k K = F -1 0 ˙
gicqusker.q Q = G / 𝑠 G ~ QG K
gicqusker.s φ ran F = Base H
Assertion gicqusker φ Q 𝑔 H

Proof

Step Hyp Ref Expression
1 gicqusker.1 0 ˙ = 0 H
2 gicqusker.f φ F G GrpHom H
3 gicqusker.k K = F -1 0 ˙
4 gicqusker.q Q = G / 𝑠 G ~ QG K
5 gicqusker.s φ ran F = Base H
6 imaeq2 p = q F p = F q
7 6 unieqd p = q F p = F q
8 7 cbvmptv p Base Q F p = q Base Q F q
9 1 2 3 4 8 5 ghmqusker φ p Base Q F p Q GrpIso H
10 brgici p Base Q F p Q GrpIso H Q 𝑔 H
11 9 10 syl φ Q 𝑔 H