Database
BASIC ALGEBRAIC STRUCTURES
Groups
Isomorphisms of groups
gicref
Next ⟩
giclcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
gicref
Description:
Isomorphism is reflexive.
(Contributed by
Mario Carneiro
, 21-Apr-2016)
Ref
Expression
Assertion
gicref
⊢
R
∈
Grp
→
R
≃
𝑔
R
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
R
=
Base
R
2
1
idghm
⊢
R
∈
Grp
→
I
↾
Base
R
∈
R
GrpHom
R
3
cnvresid
⊢
I
↾
Base
R
-1
=
I
↾
Base
R
4
3
2
eqeltrid
⊢
R
∈
Grp
→
I
↾
Base
R
-1
∈
R
GrpHom
R
5
isgim2
⊢
I
↾
Base
R
∈
R
GrpIso
R
↔
I
↾
Base
R
∈
R
GrpHom
R
∧
I
↾
Base
R
-1
∈
R
GrpHom
R
6
2
4
5
sylanbrc
⊢
R
∈
Grp
→
I
↾
Base
R
∈
R
GrpIso
R
7
brgici
⊢
I
↾
Base
R
∈
R
GrpIso
R
→
R
≃
𝑔
R
8
6
7
syl
⊢
R
∈
Grp
→
R
≃
𝑔
R