Metamath Proof Explorer


Theorem gicref

Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gicref R Grp R 𝑔 R

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 1 idghm R Grp I Base R R GrpHom R
3 cnvresid I Base R -1 = I Base R
4 3 2 eqeltrid R Grp I Base R -1 R GrpHom R
5 isgim2 I Base R R GrpIso R I Base R R GrpHom R I Base R -1 R GrpHom R
6 2 4 5 sylanbrc R Grp I Base R R GrpIso R
7 brgici I Base R R GrpIso R R 𝑔 R
8 6 7 syl R Grp R 𝑔 R