Database
BASIC ALGEBRAIC STRUCTURES
Groups
Isomorphisms of groups
gicsym
Next ⟩
gictr
Metamath Proof Explorer
Ascii
Unicode
Theorem
gicsym
Description:
Isomorphism is symmetric.
(Contributed by
Mario Carneiro
, 21-Apr-2016)
Ref
Expression
Assertion
gicsym
⊢
R
≃
𝑔
S
→
S
≃
𝑔
R
Proof
Step
Hyp
Ref
Expression
1
brgic
⊢
R
≃
𝑔
S
↔
R
GrpIso
S
≠
∅
2
n0
⊢
R
GrpIso
S
≠
∅
↔
∃
f
f
∈
R
GrpIso
S
3
gimcnv
⊢
f
∈
R
GrpIso
S
→
f
-1
∈
S
GrpIso
R
4
brgici
⊢
f
-1
∈
S
GrpIso
R
→
S
≃
𝑔
R
5
3
4
syl
⊢
f
∈
R
GrpIso
S
→
S
≃
𝑔
R
6
5
exlimiv
⊢
∃
f
f
∈
R
GrpIso
S
→
S
≃
𝑔
R
7
2
6
sylbi
⊢
R
GrpIso
S
≠
∅
→
S
≃
𝑔
R
8
1
7
sylbi
⊢
R
≃
𝑔
S
→
S
≃
𝑔
R