Metamath Proof Explorer


Theorem gicsym

Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gicsym R 𝑔 S S 𝑔 R

Proof

Step Hyp Ref Expression
1 brgic R 𝑔 S R GrpIso S
2 n0 R GrpIso S f f R GrpIso S
3 gimcnv f R GrpIso S f -1 S GrpIso R
4 brgici f -1 S GrpIso R S 𝑔 R
5 3 4 syl f R GrpIso S S 𝑔 R
6 5 exlimiv f f R GrpIso S S 𝑔 R
7 2 6 sylbi R GrpIso S S 𝑔 R
8 1 7 sylbi R 𝑔 S S 𝑔 R