Metamath Proof Explorer


Theorem gictr

Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gictr R 𝑔 S S 𝑔 T R 𝑔 T

Proof

Step Hyp Ref Expression
1 brgic R 𝑔 S R GrpIso S
2 brgic S 𝑔 T S GrpIso T
3 n0 R GrpIso S f f R GrpIso S
4 n0 S GrpIso T g g S GrpIso T
5 exdistrv f g f R GrpIso S g S GrpIso T f f R GrpIso S g g S GrpIso T
6 gimco g S GrpIso T f R GrpIso S g f R GrpIso T
7 brgici g f R GrpIso T R 𝑔 T
8 6 7 syl g S GrpIso T f R GrpIso S R 𝑔 T
9 8 ancoms f R GrpIso S g S GrpIso T R 𝑔 T
10 9 exlimivv f g f R GrpIso S g S GrpIso T R 𝑔 T
11 5 10 sylbir f f R GrpIso S g g S GrpIso T R 𝑔 T
12 3 4 11 syl2anb R GrpIso S S GrpIso T R 𝑔 T
13 1 2 12 syl2anb R 𝑔 S S 𝑔 T R 𝑔 T