Database
BASIC ALGEBRAIC STRUCTURES
Groups
Isomorphisms of groups
gictr
Next ⟩
gicer
Metamath Proof Explorer
Ascii
Unicode
Theorem
gictr
Description:
Isomorphism is transitive.
(Contributed by
Mario Carneiro
, 21-Apr-2016)
Ref
Expression
Assertion
gictr
⊢
R
≃
𝑔
S
∧
S
≃
𝑔
T
→
R
≃
𝑔
T
Proof
Step
Hyp
Ref
Expression
1
brgic
⊢
R
≃
𝑔
S
↔
R
GrpIso
S
≠
∅
2
brgic
⊢
S
≃
𝑔
T
↔
S
GrpIso
T
≠
∅
3
n0
⊢
R
GrpIso
S
≠
∅
↔
∃
f
f
∈
R
GrpIso
S
4
n0
⊢
S
GrpIso
T
≠
∅
↔
∃
g
g
∈
S
GrpIso
T
5
exdistrv
⊢
∃
f
∃
g
f
∈
R
GrpIso
S
∧
g
∈
S
GrpIso
T
↔
∃
f
f
∈
R
GrpIso
S
∧
∃
g
g
∈
S
GrpIso
T
6
gimco
⊢
g
∈
S
GrpIso
T
∧
f
∈
R
GrpIso
S
→
g
∘
f
∈
R
GrpIso
T
7
brgici
⊢
g
∘
f
∈
R
GrpIso
T
→
R
≃
𝑔
T
8
6
7
syl
⊢
g
∈
S
GrpIso
T
∧
f
∈
R
GrpIso
S
→
R
≃
𝑔
T
9
8
ancoms
⊢
f
∈
R
GrpIso
S
∧
g
∈
S
GrpIso
T
→
R
≃
𝑔
T
10
9
exlimivv
⊢
∃
f
∃
g
f
∈
R
GrpIso
S
∧
g
∈
S
GrpIso
T
→
R
≃
𝑔
T
11
5
10
sylbir
⊢
∃
f
f
∈
R
GrpIso
S
∧
∃
g
g
∈
S
GrpIso
T
→
R
≃
𝑔
T
12
3
4
11
syl2anb
⊢
R
GrpIso
S
≠
∅
∧
S
GrpIso
T
≠
∅
→
R
≃
𝑔
T
13
1
2
12
syl2anb
⊢
R
≃
𝑔
S
∧
S
≃
𝑔
T
→
R
≃
𝑔
T