Metamath Proof Explorer


Theorem gimcnv

Description: The converse of a bijective group homomorphism is a bijective group homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gimcnv F S GrpIso T F -1 T GrpIso S

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 ghmf F S GrpHom T F : Base S Base T
4 frel F : Base S Base T Rel F
5 dfrel2 Rel F F -1 -1 = F
6 4 5 sylib F : Base S Base T F -1 -1 = F
7 3 6 syl F S GrpHom T F -1 -1 = F
8 id F S GrpHom T F S GrpHom T
9 7 8 eqeltrd F S GrpHom T F -1 -1 S GrpHom T
10 9 anim1ci F S GrpHom T F -1 T GrpHom S F -1 T GrpHom S F -1 -1 S GrpHom T
11 isgim2 F S GrpIso T F S GrpHom T F -1 T GrpHom S
12 isgim2 F -1 T GrpIso S F -1 T GrpHom S F -1 -1 S GrpHom T
13 10 11 12 3imtr4i F S GrpIso T F -1 T GrpIso S