Metamath Proof Explorer


Theorem gimco

Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gimco F T GrpIso U G S GrpIso T F G S GrpIso U

Proof

Step Hyp Ref Expression
1 isgim2 F T GrpIso U F T GrpHom U F -1 U GrpHom T
2 isgim2 G S GrpIso T G S GrpHom T G -1 T GrpHom S
3 ghmco F T GrpHom U G S GrpHom T F G S GrpHom U
4 cnvco F G -1 = G -1 F -1
5 ghmco G -1 T GrpHom S F -1 U GrpHom T G -1 F -1 U GrpHom S
6 5 ancoms F -1 U GrpHom T G -1 T GrpHom S G -1 F -1 U GrpHom S
7 4 6 eqeltrid F -1 U GrpHom T G -1 T GrpHom S F G -1 U GrpHom S
8 3 7 anim12i F T GrpHom U G S GrpHom T F -1 U GrpHom T G -1 T GrpHom S F G S GrpHom U F G -1 U GrpHom S
9 8 an4s F T GrpHom U F -1 U GrpHom T G S GrpHom T G -1 T GrpHom S F G S GrpHom U F G -1 U GrpHom S
10 1 2 9 syl2anb F T GrpIso U G S GrpIso T F G S GrpHom U F G -1 U GrpHom S
11 isgim2 F G S GrpIso U F G S GrpHom U F G -1 U GrpHom S
12 10 11 sylibr F T GrpIso U G S GrpIso T F G S GrpIso U