Metamath Proof Explorer
Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
|
|
Ref |
Expression |
|
Hypotheses |
isgim.b |
|
|
|
isgim.c |
|
|
Assertion |
gimf1o |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isgim.b |
|
2 |
|
isgim.c |
|
3 |
1 2
|
isgim |
|
4 |
3
|
simprbi |
|