Metamath Proof Explorer


Theorem gimf1o

Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses isgim.b B = Base R
isgim.c C = Base S
Assertion gimf1o F R GrpIso S F : B 1-1 onto C

Proof

Step Hyp Ref Expression
1 isgim.b B = Base R
2 isgim.c C = Base S
3 1 2 isgim F R GrpIso S F R GrpHom S F : B 1-1 onto C
4 3 simprbi F R GrpIso S F : B 1-1 onto C