Metamath Proof Explorer


Theorem gimfn

Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion gimfn GrpIso Fn Grp × Grp

Proof

Step Hyp Ref Expression
1 df-gim GrpIso = s Grp , t Grp g s GrpHom t | g : Base s 1-1 onto Base t
2 ovex s GrpHom t V
3 2 rabex g s GrpHom t | g : Base s 1-1 onto Base t V
4 1 3 fnmpoi GrpIso Fn Grp × Grp