Metamath Proof Explorer


Theorem gimghm

Description: An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion gimghm F R GrpIso S F R GrpHom S

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid Base S = Base S
3 1 2 isgim F R GrpIso S F R GrpHom S F : Base R 1-1 onto Base S
4 3 simplbi F R GrpIso S F R GrpHom S