Metamath Proof Explorer


Theorem glbconN

Description: De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012) New df-riota . (Revised by SN, 3-Jan-2025) (New usage is discouraged.)

Ref Expression
Hypotheses glbcon.b B = Base K
glbcon.u U = lub K
glbcon.g G = glb K
glbcon.o ˙ = oc K
Assertion glbconN K HL S B G S = ˙ U x B | ˙ x S

Proof

Step Hyp Ref Expression
1 glbcon.b B = Base K
2 glbcon.u U = lub K
3 glbcon.g G = glb K
4 glbcon.o ˙ = oc K
5 sseqin2 S B B S = S
6 5 biimpi S B B S = S
7 dfin5 B S = x B | x S
8 6 7 eqtr3di S B S = x B | x S
9 8 fveq2d S B G S = G x B | x S
10 eqid K = K
11 biid z x B | x S y K z w B z x B | x S w K z w K y z x B | x S y K z w B z x B | x S w K z w K y
12 id K HL K HL
13 ssrab2 x B | x S B
14 13 a1i K HL x B | x S B
15 1 10 3 11 12 14 glbval K HL G x B | x S = ι y B | z x B | x S y K z w B z x B | x S w K z w K y
16 hlop K HL K OP
17 hlclat K HL K CLat
18 1 3 clatglbcl2 K CLat x B | x S B x B | x S dom G
19 17 14 18 syl2anc K HL x B | x S dom G
20 1 10 3 11 12 19 glbeu K HL ∃! y B z x B | x S y K z w B z x B | x S w K z w K y
21 breq1 y = ˙ v y K z ˙ v K z
22 21 ralbidv y = ˙ v z x B | x S y K z z x B | x S ˙ v K z
23 breq2 y = ˙ v w K y w K ˙ v
24 23 imbi2d y = ˙ v z x B | x S w K z w K y z x B | x S w K z w K ˙ v
25 24 ralbidv y = ˙ v w B z x B | x S w K z w K y w B z x B | x S w K z w K ˙ v
26 22 25 anbi12d y = ˙ v z x B | x S y K z w B z x B | x S w K z w K y z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v
27 1 4 26 riotaocN K OP ∃! y B z x B | x S y K z w B z x B | x S w K z w K y ι y B | z x B | x S y K z w B z x B | x S w K z w K y = ˙ ι v B | z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v
28 16 20 27 syl2anc K HL ι y B | z x B | x S y K z w B z x B | x S w K z w K y = ˙ ι v B | z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v
29 16 ad2antrr K HL v B u B K OP
30 1 4 opoccl K OP u B ˙ u B
31 29 30 sylancom K HL v B u B ˙ u B
32 16 ad2antrr K HL v B z B K OP
33 1 4 opoccl K OP z B ˙ z B
34 32 33 sylancom K HL v B z B ˙ z B
35 1 4 opococ K OP z B ˙ ˙ z = z
36 32 35 sylancom K HL v B z B ˙ ˙ z = z
37 36 eqcomd K HL v B z B z = ˙ ˙ z
38 fveq2 u = ˙ z ˙ u = ˙ ˙ z
39 38 rspceeqv ˙ z B z = ˙ ˙ z u B z = ˙ u
40 34 37 39 syl2anc K HL v B z B u B z = ˙ u
41 eleq1 z = ˙ u z S ˙ u S
42 breq2 z = ˙ u ˙ v K z ˙ v K ˙ u
43 41 42 imbi12d z = ˙ u z S ˙ v K z ˙ u S ˙ v K ˙ u
44 43 adantl K HL v B z = ˙ u z S ˙ v K z ˙ u S ˙ v K ˙ u
45 31 40 44 ralxfrd K HL v B z B z S ˙ v K z u B ˙ u S ˙ v K ˙ u
46 simpr K HL v B u B u B
47 simplr K HL v B u B v B
48 1 10 4 oplecon3b K OP u B v B u K v ˙ v K ˙ u
49 29 46 47 48 syl3anc K HL v B u B u K v ˙ v K ˙ u
50 49 imbi2d K HL v B u B ˙ u S u K v ˙ u S ˙ v K ˙ u
51 50 ralbidva K HL v B u B ˙ u S u K v u B ˙ u S ˙ v K ˙ u
52 45 51 bitr4d K HL v B z B z S ˙ v K z u B ˙ u S u K v
53 eleq1 x = z x S z S
54 53 ralrab z x B | x S ˙ v K z z B z S ˙ v K z
55 fveq2 x = u ˙ x = ˙ u
56 55 eleq1d x = u ˙ x S ˙ u S
57 56 ralrab u x B | ˙ x S u K v u B ˙ u S u K v
58 52 54 57 3bitr4g K HL v B z x B | x S ˙ v K z u x B | ˙ x S u K v
59 16 ad2antrr K HL v B t B K OP
60 1 4 opoccl K OP t B ˙ t B
61 59 60 sylancom K HL v B t B ˙ t B
62 16 ad2antrr K HL v B w B K OP
63 1 4 opoccl K OP w B ˙ w B
64 62 63 sylancom K HL v B w B ˙ w B
65 1 4 opococ K OP w B ˙ ˙ w = w
66 62 65 sylancom K HL v B w B ˙ ˙ w = w
67 66 eqcomd K HL v B w B w = ˙ ˙ w
68 fveq2 t = ˙ w ˙ t = ˙ ˙ w
69 68 rspceeqv ˙ w B w = ˙ ˙ w t B w = ˙ t
70 64 67 69 syl2anc K HL v B w B t B w = ˙ t
71 breq1 w = ˙ t w K z ˙ t K z
72 71 ralbidv w = ˙ t z x B | x S w K z z x B | x S ˙ t K z
73 breq1 w = ˙ t w K ˙ v ˙ t K ˙ v
74 72 73 imbi12d w = ˙ t z x B | x S w K z w K ˙ v z x B | x S ˙ t K z ˙ t K ˙ v
75 74 adantl K HL v B w = ˙ t z x B | x S w K z w K ˙ v z x B | x S ˙ t K z ˙ t K ˙ v
76 61 70 75 ralxfrd K HL v B w B z x B | x S w K z w K ˙ v t B z x B | x S ˙ t K z ˙ t K ˙ v
77 16 ad3antrrr K HL v B t B u B K OP
78 simpr K HL v B t B u B u B
79 simplr K HL v B t B u B t B
80 1 10 4 oplecon3b K OP u B t B u K t ˙ t K ˙ u
81 77 78 79 80 syl3anc K HL v B t B u B u K t ˙ t K ˙ u
82 81 imbi2d K HL v B t B u B ˙ u S u K t ˙ u S ˙ t K ˙ u
83 82 ralbidva K HL v B t B u B ˙ u S u K t u B ˙ u S ˙ t K ˙ u
84 77 30 sylancom K HL v B t B u B ˙ u B
85 16 ad3antrrr K HL v B t B z B K OP
86 85 33 sylancom K HL v B t B z B ˙ z B
87 85 35 sylancom K HL v B t B z B ˙ ˙ z = z
88 87 eqcomd K HL v B t B z B z = ˙ ˙ z
89 86 88 39 syl2anc K HL v B t B z B u B z = ˙ u
90 breq2 z = ˙ u ˙ t K z ˙ t K ˙ u
91 41 90 imbi12d z = ˙ u z S ˙ t K z ˙ u S ˙ t K ˙ u
92 91 adantl K HL v B t B z = ˙ u z S ˙ t K z ˙ u S ˙ t K ˙ u
93 84 89 92 ralxfrd K HL v B t B z B z S ˙ t K z u B ˙ u S ˙ t K ˙ u
94 83 93 bitr4d K HL v B t B u B ˙ u S u K t z B z S ˙ t K z
95 56 ralrab u x B | ˙ x S u K t u B ˙ u S u K t
96 53 ralrab z x B | x S ˙ t K z z B z S ˙ t K z
97 94 95 96 3bitr4g K HL v B t B u x B | ˙ x S u K t z x B | x S ˙ t K z
98 simplr K HL v B t B v B
99 simpr K HL v B t B t B
100 1 10 4 oplecon3b K OP v B t B v K t ˙ t K ˙ v
101 59 98 99 100 syl3anc K HL v B t B v K t ˙ t K ˙ v
102 97 101 imbi12d K HL v B t B u x B | ˙ x S u K t v K t z x B | x S ˙ t K z ˙ t K ˙ v
103 102 ralbidva K HL v B t B u x B | ˙ x S u K t v K t t B z x B | x S ˙ t K z ˙ t K ˙ v
104 76 103 bitr4d K HL v B w B z x B | x S w K z w K ˙ v t B u x B | ˙ x S u K t v K t
105 58 104 anbi12d K HL v B z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t
106 105 riotabidva K HL ι v B | z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v = ι v B | u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t
107 ssrab2 x B | ˙ x S B
108 biid u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t
109 simpl K HL x B | ˙ x S B K HL
110 simpr K HL x B | ˙ x S B x B | ˙ x S B
111 1 10 2 108 109 110 lubval K HL x B | ˙ x S B U x B | ˙ x S = ι v B | u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t
112 107 111 mpan2 K HL U x B | ˙ x S = ι v B | u x B | ˙ x S u K v t B u x B | ˙ x S u K t v K t
113 106 112 eqtr4d K HL ι v B | z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v = U x B | ˙ x S
114 113 fveq2d K HL ˙ ι v B | z x B | x S ˙ v K z w B z x B | x S w K z w K ˙ v = ˙ U x B | ˙ x S
115 15 28 114 3eqtrd K HL G x B | x S = ˙ U x B | ˙ x S
116 9 115 sylan9eqr K HL S B G S = ˙ U x B | ˙ x S