Database
BASIC ORDER THEORY
Partially ordered sets (posets)
glbdm
Next ⟩
glbfun
Metamath Proof Explorer
Ascii
Unicode
Theorem
glbdm
Description:
Domain of the greatest lower bound function of a poset.
(Contributed by
NM
, 6-Sep-2018)
Ref
Expression
Hypotheses
glbfval.b
⊢
B
=
Base
K
glbfval.l
⊢
≤
˙
=
≤
K
glbfval.g
⊢
G
=
glb
⁡
K
glbfval.p
⊢
ψ
↔
∀
y
∈
s
x
≤
˙
y
∧
∀
z
∈
B
∀
y
∈
s
z
≤
˙
y
→
z
≤
˙
x
glbfval.k
⊢
φ
→
K
∈
V
Assertion
glbdm
⊢
φ
→
dom
⁡
G
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
Proof
Step
Hyp
Ref
Expression
1
glbfval.b
⊢
B
=
Base
K
2
glbfval.l
⊢
≤
˙
=
≤
K
3
glbfval.g
⊢
G
=
glb
⁡
K
4
glbfval.p
⊢
ψ
↔
∀
y
∈
s
x
≤
˙
y
∧
∀
z
∈
B
∀
y
∈
s
z
≤
˙
y
→
z
≤
˙
x
5
glbfval.k
⊢
φ
→
K
∈
V
6
1
2
3
4
5
glbfval
⊢
φ
→
G
=
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
7
6
dmeqd
⊢
φ
→
dom
⁡
G
=
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
8
riotaex
⊢
ι
x
∈
B
|
ψ
∈
V
9
eqid
⊢
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
10
8
9
dmmpti
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
𝒫
B
11
10
ineq2i
⊢
s
|
∃!
x
∈
B
ψ
∩
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
=
s
|
∃!
x
∈
B
ψ
∩
𝒫
B
12
dmres
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
=
s
|
∃!
x
∈
B
ψ
∩
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
13
dfrab2
⊢
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
=
s
|
∃!
x
∈
B
ψ
∩
𝒫
B
14
11
12
13
3eqtr4i
⊢
dom
⁡
s
∈
𝒫
B
⟼
ι
x
∈
B
|
ψ
↾
s
|
∃!
x
∈
B
ψ
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ
15
7
14
eqtrdi
⊢
φ
→
dom
⁡
G
=
s
∈
𝒫
B
|
∃!
x
∈
B
ψ