Metamath Proof Explorer


Theorem glbdm

Description: Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses glbfval.b B = Base K
glbfval.l ˙ = K
glbfval.g G = glb K
glbfval.p ψ y s x ˙ y z B y s z ˙ y z ˙ x
glbfval.k φ K V
Assertion glbdm φ dom G = s 𝒫 B | ∃! x B ψ

Proof

Step Hyp Ref Expression
1 glbfval.b B = Base K
2 glbfval.l ˙ = K
3 glbfval.g G = glb K
4 glbfval.p ψ y s x ˙ y z B y s z ˙ y z ˙ x
5 glbfval.k φ K V
6 1 2 3 4 5 glbfval φ G = s 𝒫 B ι x B | ψ s | ∃! x B ψ
7 6 dmeqd φ dom G = dom s 𝒫 B ι x B | ψ s | ∃! x B ψ
8 riotaex ι x B | ψ V
9 eqid s 𝒫 B ι x B | ψ = s 𝒫 B ι x B | ψ
10 8 9 dmmpti dom s 𝒫 B ι x B | ψ = 𝒫 B
11 10 ineq2i s | ∃! x B ψ dom s 𝒫 B ι x B | ψ = s | ∃! x B ψ 𝒫 B
12 dmres dom s 𝒫 B ι x B | ψ s | ∃! x B ψ = s | ∃! x B ψ dom s 𝒫 B ι x B | ψ
13 dfrab2 s 𝒫 B | ∃! x B ψ = s | ∃! x B ψ 𝒫 B
14 11 12 13 3eqtr4i dom s 𝒫 B ι x B | ψ s | ∃! x B ψ = s 𝒫 B | ∃! x B ψ
15 7 14 eqtrdi φ dom G = s 𝒫 B | ∃! x B ψ