Metamath Proof Explorer


Theorem glbelss

Description: A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbs.b B = Base K
glbs.l ˙ = K
glbs.g G = glb K
glbs.k φ K V
glbs.s φ S dom G
Assertion glbelss φ S B

Proof

Step Hyp Ref Expression
1 glbs.b B = Base K
2 glbs.l ˙ = K
3 glbs.g G = glb K
4 glbs.k φ K V
5 glbs.s φ S dom G
6 biid y S x ˙ y z B y S z ˙ y z ˙ x y S x ˙ y z B y S z ˙ y z ˙ x
7 1 2 3 6 4 glbeldm φ S dom G S B ∃! x B y S x ˙ y z B y S z ˙ y z ˙ x
8 5 7 mpbid φ S B ∃! x B y S x ˙ y z B y S z ˙ y z ˙ x
9 8 simpld φ S B