Metamath Proof Explorer


Theorem glbeu

Description: Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbval.b B = Base K
glbval.l ˙ = K
glbval.g G = glb K
glbval.p ψ y S x ˙ y z B y S z ˙ y z ˙ x
glbva.k φ K V
glbval.s φ S dom G
Assertion glbeu φ ∃! x B ψ

Proof

Step Hyp Ref Expression
1 glbval.b B = Base K
2 glbval.l ˙ = K
3 glbval.g G = glb K
4 glbval.p ψ y S x ˙ y z B y S z ˙ y z ˙ x
5 glbva.k φ K V
6 glbval.s φ S dom G
7 1 2 3 4 5 glbeldm φ S dom G S B ∃! x B ψ
8 6 7 mpbid φ S B ∃! x B ψ
9 8 simprd φ ∃! x B ψ