Metamath Proof Explorer


Theorem glble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses glbprop.b B = Base K
glbprop.l ˙ = K
glbprop.u U = glb K
glbprop.k φ K V
glbprop.s φ S dom U
glble.x φ X S
Assertion glble φ U S ˙ X

Proof

Step Hyp Ref Expression
1 glbprop.b B = Base K
2 glbprop.l ˙ = K
3 glbprop.u U = glb K
4 glbprop.k φ K V
5 glbprop.s φ S dom U
6 glble.x φ X S
7 breq2 y = X U S ˙ y U S ˙ X
8 1 2 3 4 5 glbprop φ y S U S ˙ y z B y S z ˙ y z ˙ U S
9 8 simpld φ y S U S ˙ y
10 7 9 6 rspcdva φ U S ˙ X