Metamath Proof Explorer
Description: The GLB of the set of two comparable elements in a poset is the less
one of the two. (Contributed by Zhi Wang, 26-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
lubpr.k |
|
|
|
lubpr.b |
|
|
|
lubpr.x |
|
|
|
lubpr.y |
|
|
|
lubpr.l |
|
|
|
lubpr.c |
|
|
|
lubpr.s |
|
|
|
glbpr.g |
|
|
Assertion |
glbpr |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lubpr.k |
|
2 |
|
lubpr.b |
|
3 |
|
lubpr.x |
|
4 |
|
lubpr.y |
|
5 |
|
lubpr.l |
|
6 |
|
lubpr.c |
|
7 |
|
lubpr.s |
|
8 |
|
glbpr.g |
|
9 |
1 2 3 4 5 6 7 8
|
glbprlem |
|
10 |
9
|
simprd |
|