Description: The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | ||
| lubpr.b | |||
| lubpr.x | |||
| lubpr.y | |||
| lubpr.l | |||
| lubpr.c | |||
| lubpr.s | |||
| glbpr.g | |||
| Assertion | glbprdm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | ||
| 2 | lubpr.b | ||
| 3 | lubpr.x | ||
| 4 | lubpr.y | ||
| 5 | lubpr.l | ||
| 6 | lubpr.c | ||
| 7 | lubpr.s | ||
| 8 | glbpr.g | ||
| 9 | 1 2 3 4 5 6 7 8 | glbprlem | |
| 10 | 9 | simpld |