Description: The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubpr.k | ||
lubpr.b | |||
lubpr.x | |||
lubpr.y | |||
lubpr.l | |||
lubpr.c | |||
lubpr.s | |||
glbpr.g | |||
Assertion | glbprdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | ||
2 | lubpr.b | ||
3 | lubpr.x | ||
4 | lubpr.y | ||
5 | lubpr.l | ||
6 | lubpr.c | ||
7 | lubpr.s | ||
8 | glbpr.g | ||
9 | 1 2 3 4 5 6 7 8 | glbprlem | |
10 | 9 | simpld |