Metamath Proof Explorer


Theorem goaln0

Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023)

Ref Expression
Assertion goaln0 𝑔 i A Fmla N N

Proof

Step Hyp Ref Expression
1 df-goal 𝑔 i A = 2 𝑜 i A
2 2on0 2 𝑜
3 2 neii ¬ 2 𝑜 =
4 3 intnanr ¬ 2 𝑜 = i A = k j
5 2oex 2 𝑜 V
6 opex i A V
7 5 6 opth 2 𝑜 i A = k j 2 𝑜 = i A = k j
8 4 7 mtbir ¬ 2 𝑜 i A = k j
9 goel k ω j ω k 𝑔 j = k j
10 9 eqeq2d k ω j ω 2 𝑜 i A = k 𝑔 j 2 𝑜 i A = k j
11 8 10 mtbiri k ω j ω ¬ 2 𝑜 i A = k 𝑔 j
12 11 rgen2 k ω j ω ¬ 2 𝑜 i A = k 𝑔 j
13 ralnex2 k ω j ω ¬ 2 𝑜 i A = k 𝑔 j ¬ k ω j ω 2 𝑜 i A = k 𝑔 j
14 12 13 mpbi ¬ k ω j ω 2 𝑜 i A = k 𝑔 j
15 14 intnan ¬ 2 𝑜 i A V k ω j ω 2 𝑜 i A = k 𝑔 j
16 eqeq1 x = 2 𝑜 i A x = k 𝑔 j 2 𝑜 i A = k 𝑔 j
17 16 2rexbidv x = 2 𝑜 i A k ω j ω x = k 𝑔 j k ω j ω 2 𝑜 i A = k 𝑔 j
18 fmla0 Fmla = x V | k ω j ω x = k 𝑔 j
19 17 18 elrab2 2 𝑜 i A Fmla 2 𝑜 i A V k ω j ω 2 𝑜 i A = k 𝑔 j
20 15 19 mtbir ¬ 2 𝑜 i A Fmla
21 1 20 eqneltri ¬ 𝑔 i A Fmla
22 fveq2 N = Fmla N = Fmla
23 22 eleq2d N = 𝑔 i A Fmla N 𝑔 i A Fmla
24 21 23 mtbiri N = ¬ 𝑔 i A Fmla N
25 24 necon2ai 𝑔 i A Fmla N N