Metamath Proof Explorer


Theorem gonan0

Description: The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion gonan0 A 𝑔 B Fmla N N

Proof

Step Hyp Ref Expression
1 1n0 1 𝑜
2 1 neii ¬ 1 𝑜 =
3 2 intnanr ¬ 1 𝑜 = A B = i j
4 1oex 1 𝑜 V
5 opex A B V
6 4 5 opth 1 𝑜 A B = i j 1 𝑜 = A B = i j
7 3 6 mtbir ¬ 1 𝑜 A B = i j
8 goel i ω j ω i 𝑔 j = i j
9 8 eqeq2d i ω j ω 1 𝑜 A B = i 𝑔 j 1 𝑜 A B = i j
10 7 9 mtbiri i ω j ω ¬ 1 𝑜 A B = i 𝑔 j
11 10 rgen2 i ω j ω ¬ 1 𝑜 A B = i 𝑔 j
12 ralnex2 i ω j ω ¬ 1 𝑜 A B = i 𝑔 j ¬ i ω j ω 1 𝑜 A B = i 𝑔 j
13 11 12 mpbi ¬ i ω j ω 1 𝑜 A B = i 𝑔 j
14 13 intnan ¬ 1 𝑜 A B V i ω j ω 1 𝑜 A B = i 𝑔 j
15 eqeq1 x = 1 𝑜 A B x = i 𝑔 j 1 𝑜 A B = i 𝑔 j
16 15 2rexbidv x = 1 𝑜 A B i ω j ω x = i 𝑔 j i ω j ω 1 𝑜 A B = i 𝑔 j
17 fmla0 Fmla = x V | i ω j ω x = i 𝑔 j
18 16 17 elrab2 1 𝑜 A B Fmla 1 𝑜 A B V i ω j ω 1 𝑜 A B = i 𝑔 j
19 14 18 mtbir ¬ 1 𝑜 A B Fmla
20 gonafv A V B V A 𝑔 B = 1 𝑜 A B
21 20 eleq1d A V B V A 𝑔 B Fmla 1 𝑜 A B Fmla
22 19 21 mtbiri A V B V ¬ A 𝑔 B Fmla
23 eqid x V × V 1 𝑜 x = x V × V 1 𝑜 x
24 23 dmmptss dom x V × V 1 𝑜 x V × V
25 relxp Rel V × V
26 relss dom x V × V 1 𝑜 x V × V Rel V × V Rel dom x V × V 1 𝑜 x
27 24 25 26 mp2 Rel dom x V × V 1 𝑜 x
28 df-gona 𝑔 = x V × V 1 𝑜 x
29 28 dmeqi dom 𝑔 = dom x V × V 1 𝑜 x
30 29 releqi Rel dom 𝑔 Rel dom x V × V 1 𝑜 x
31 27 30 mpbir Rel dom 𝑔
32 31 ovprc ¬ A V B V A 𝑔 B =
33 peano1 ω
34 fmlaomn0 ω Fmla
35 33 34 ax-mp Fmla
36 35 neli ¬ Fmla
37 eleq1 A 𝑔 B = A 𝑔 B Fmla Fmla
38 36 37 mtbiri A 𝑔 B = ¬ A 𝑔 B Fmla
39 32 38 syl ¬ A V B V ¬ A 𝑔 B Fmla
40 22 39 pm2.61i ¬ A 𝑔 B Fmla
41 fveq2 N = Fmla N = Fmla
42 41 eleq2d N = A 𝑔 B Fmla N A 𝑔 B Fmla
43 40 42 mtbiri N = ¬ A 𝑔 B Fmla N
44 43 necon2ai A 𝑔 B Fmla N N