Metamath Proof Explorer


Theorem griedg0prc

Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u U = v e | e :
Assertion griedg0prc U V

Proof

Step Hyp Ref Expression
1 griedg0prc.u U = v e | e :
2 0ex V
3 feq1 e = e : :
4 f0 :
5 2 3 4 ceqsexv2d e e :
6 opabn1stprc e e : v e | e : V
7 5 6 ax-mp v e | e : V
8 neleq1 U = v e | e : U V v e | e : V
9 1 8 ax-mp U V v e | e : V
10 7 9 mpbir U V