Metamath Proof Explorer


Theorem griedg0ssusgr

Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u U = v e | e :
Assertion griedg0ssusgr U USGraph

Proof

Step Hyp Ref Expression
1 griedg0prc.u U = v e | e :
2 1 eleq2i g U g v e | e :
3 elopab g v e | e : v e g = v e e :
4 2 3 bitri g U v e g = v e e :
5 opex v e V
6 5 a1i e : v e V
7 vex v V
8 vex e V
9 7 8 opiedgfvi iEdg v e = e
10 f0bi e : e =
11 10 biimpi e : e =
12 9 11 syl5eq e : iEdg v e =
13 6 12 usgr0e e : v e USGraph
14 13 adantl g = v e e : v e USGraph
15 eleq1 g = v e g USGraph v e USGraph
16 15 adantr g = v e e : g USGraph v e USGraph
17 14 16 mpbird g = v e e : g USGraph
18 17 exlimivv v e g = v e e : g USGraph
19 4 18 sylbi g U g USGraph
20 19 ssriv U USGraph