Metamath Proof Explorer


Theorem grothprimlem

Description: Lemma for grothprim . Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007)

Ref Expression
Assertion grothprimlem uvwggwhhgh=uh=v

Proof

Step Hyp Ref Expression
1 dfpr2 uv=h|h=uh=v
2 1 eleq1i uvwh|h=uh=vw
3 clabel h|h=uh=vwggwhhgh=uh=v
4 2 3 bitri uvwggwhhgh=uh=v