Metamath Proof Explorer
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
grpassd.b |
|
|
|
grpassd.p |
|
|
|
grpassd.g |
|
|
|
grpassd.1 |
|
|
|
grpassd.2 |
|
|
|
grpassd.3 |
|
|
Assertion |
grpassd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grpassd.b |
|
2 |
|
grpassd.p |
|
3 |
|
grpassd.g |
|
4 |
|
grpassd.1 |
|
5 |
|
grpassd.2 |
|
6 |
|
grpassd.3 |
|
7 |
1 2
|
grpass |
|
8 |
3 4 5 6 7
|
syl13anc |
|