Metamath Proof Explorer
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
grpassd.b |
|
|
|
grpassd.p |
|
|
|
grpassd.g |
|
|
|
grpassd.1 |
|
|
|
grpassd.2 |
|
|
|
grpassd.3 |
|
|
Assertion |
grpassd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpassd.b |
|
| 2 |
|
grpassd.p |
|
| 3 |
|
grpassd.g |
|
| 4 |
|
grpassd.1 |
|
| 5 |
|
grpassd.2 |
|
| 6 |
|
grpassd.3 |
|
| 7 |
1 2
|
grpass |
|
| 8 |
3 4 5 6 7
|
syl13anc |
|