Metamath Proof Explorer


Theorem grpassd

Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpassd.b B = Base G
grpassd.p + ˙ = + G
grpassd.g φ G Grp
grpassd.1 φ X B
grpassd.2 φ Y B
grpassd.3 φ Z B
Assertion grpassd φ X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 grpassd.b B = Base G
2 grpassd.p + ˙ = + G
3 grpassd.g φ G Grp
4 grpassd.1 φ X B
5 grpassd.2 φ Y B
6 grpassd.3 φ Z B
7 1 2 grpass G Grp X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z
8 3 4 5 6 7 syl13anc φ X + ˙ Y + ˙ Z = X + ˙ Y + ˙ Z