Metamath Proof Explorer


Theorem grpbasex

Description: The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012)

Ref Expression
Hypotheses grpstrx.b B V
grpstrx.p + ˙ V
grpstrx.g G = 1 B 2 + ˙
Assertion grpbasex B = Base G

Proof

Step Hyp Ref Expression
1 grpstrx.b B V
2 grpstrx.p + ˙ V
3 grpstrx.g G = 1 B 2 + ˙
4 basendx Base ndx = 1
5 4 opeq1i Base ndx B = 1 B
6 plusgndx + ndx = 2
7 6 opeq1i + ndx + ˙ = 2 + ˙
8 5 7 preq12i Base ndx B + ndx + ˙ = 1 B 2 + ˙
9 3 8 eqtr4i G = Base ndx B + ndx + ˙
10 9 grpbase B V B = Base G
11 1 10 ax-mp B = Base G