Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpcl
Next ⟩
grpass
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpcl
Description:
Closure of the operation of a group.
(Contributed by
NM
, 14-Aug-2011)
Ref
Expression
Hypotheses
grpcl.b
⊢
B
=
Base
G
grpcl.p
⊢
+
˙
=
+
G
Assertion
grpcl
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
∈
B
Proof
Step
Hyp
Ref
Expression
1
grpcl.b
⊢
B
=
Base
G
2
grpcl.p
⊢
+
˙
=
+
G
3
grpmnd
⊢
G
∈
Grp
→
G
∈
Mnd
4
1
2
mndcl
⊢
G
∈
Mnd
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
∈
B
5
3
4
syl3an1
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
∈
B