Metamath Proof Explorer


Theorem grpcl

Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b B = Base G
grpcl.p + ˙ = + G
Assertion grpcl G Grp X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 grpcl.b B = Base G
2 grpcl.p + ˙ = + G
3 grpmnd G Grp G Mnd
4 1 2 mndcl G Mnd X B Y B X + ˙ Y B
5 3 4 syl3an1 G Grp X B Y B X + ˙ Y B