Metamath Proof Explorer


Theorem grpcld

Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses grpcld.b B = Base G
grpcld.p + ˙ = + G
grpcld.r φ G Grp
grpcld.x φ X B
grpcld.y φ Y B
Assertion grpcld φ X + ˙ Y B

Proof

Step Hyp Ref Expression
1 grpcld.b B = Base G
2 grpcld.p + ˙ = + G
3 grpcld.r φ G Grp
4 grpcld.x φ X B
5 grpcld.y φ Y B
6 1 2 grpcl G Grp X B Y B X + ˙ Y B
7 3 4 5 6 syl3anc φ X + ˙ Y B