Metamath Proof Explorer


Theorem grpid

Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinveu.b B = Base G
grpinveu.p + ˙ = + G
grpinveu.o 0 ˙ = 0 G
Assertion grpid G Grp X B X + ˙ X = X 0 ˙ = X

Proof

Step Hyp Ref Expression
1 grpinveu.b B = Base G
2 grpinveu.p + ˙ = + G
3 grpinveu.o 0 ˙ = 0 G
4 eqcom 0 ˙ = X X = 0 ˙
5 1 3 grpidcl G Grp 0 ˙ B
6 1 2 grprcan G Grp X B 0 ˙ B X B X + ˙ X = 0 ˙ + ˙ X X = 0 ˙
7 6 3exp2 G Grp X B 0 ˙ B X B X + ˙ X = 0 ˙ + ˙ X X = 0 ˙
8 5 7 mpid G Grp X B X B X + ˙ X = 0 ˙ + ˙ X X = 0 ˙
9 8 pm2.43d G Grp X B X + ˙ X = 0 ˙ + ˙ X X = 0 ˙
10 9 imp G Grp X B X + ˙ X = 0 ˙ + ˙ X X = 0 ˙
11 1 2 3 grplid G Grp X B 0 ˙ + ˙ X = X
12 11 eqeq2d G Grp X B X + ˙ X = 0 ˙ + ˙ X X + ˙ X = X
13 10 12 bitr3d G Grp X B X = 0 ˙ X + ˙ X = X
14 4 13 bitr2id G Grp X B X + ˙ X = X 0 ˙ = X