Metamath Proof Explorer


Theorem grpidd

Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpidd.b φ B = Base G
grpidd.p φ + ˙ = + G
grpidd.z φ 0 ˙ B
grpidd.i φ x B 0 ˙ + ˙ x = x
grpidd.j φ x B x + ˙ 0 ˙ = x
Assertion grpidd φ 0 ˙ = 0 G

Proof

Step Hyp Ref Expression
1 grpidd.b φ B = Base G
2 grpidd.p φ + ˙ = + G
3 grpidd.z φ 0 ˙ B
4 grpidd.i φ x B 0 ˙ + ˙ x = x
5 grpidd.j φ x B x + ˙ 0 ˙ = x
6 eqid Base G = Base G
7 eqid 0 G = 0 G
8 eqid + G = + G
9 3 1 eleqtrd φ 0 ˙ Base G
10 1 eleq2d φ x B x Base G
11 10 biimpar φ x Base G x B
12 2 adantr φ x B + ˙ = + G
13 12 oveqd φ x B 0 ˙ + ˙ x = 0 ˙ + G x
14 13 4 eqtr3d φ x B 0 ˙ + G x = x
15 11 14 syldan φ x Base G 0 ˙ + G x = x
16 12 oveqd φ x B x + ˙ 0 ˙ = x + G 0 ˙
17 16 5 eqtr3d φ x B x + G 0 ˙ = x
18 11 17 syldan φ x Base G x + G 0 ˙ = x
19 6 7 8 9 15 18 ismgmid2 φ 0 ˙ = 0 G