Metamath Proof Explorer


Theorem grpidd2

Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses grpidd2.b φ B = Base G
grpidd2.p φ + ˙ = + G
grpidd2.z φ 0 ˙ B
grpidd2.i φ x B 0 ˙ + ˙ x = x
grpidd2.j φ G Grp
Assertion grpidd2 φ 0 ˙ = 0 G

Proof

Step Hyp Ref Expression
1 grpidd2.b φ B = Base G
2 grpidd2.p φ + ˙ = + G
3 grpidd2.z φ 0 ˙ B
4 grpidd2.i φ x B 0 ˙ + ˙ x = x
5 grpidd2.j φ G Grp
6 2 oveqd φ 0 ˙ + ˙ 0 ˙ = 0 ˙ + G 0 ˙
7 oveq2 x = 0 ˙ 0 ˙ + ˙ x = 0 ˙ + ˙ 0 ˙
8 id x = 0 ˙ x = 0 ˙
9 7 8 eqeq12d x = 0 ˙ 0 ˙ + ˙ x = x 0 ˙ + ˙ 0 ˙ = 0 ˙
10 4 ralrimiva φ x B 0 ˙ + ˙ x = x
11 9 10 3 rspcdva φ 0 ˙ + ˙ 0 ˙ = 0 ˙
12 6 11 eqtr3d φ 0 ˙ + G 0 ˙ = 0 ˙
13 3 1 eleqtrd φ 0 ˙ Base G
14 eqid Base G = Base G
15 eqid + G = + G
16 eqid 0 G = 0 G
17 14 15 16 grpid G Grp 0 ˙ Base G 0 ˙ + G 0 ˙ = 0 ˙ 0 G = 0 ˙
18 5 13 17 syl2anc φ 0 ˙ + G 0 ˙ = 0 ˙ 0 G = 0 ˙
19 12 18 mpbid φ 0 G = 0 ˙
20 19 eqcomd φ 0 ˙ = 0 G