Metamath Proof Explorer


Theorem grpideu

Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses grpcl.b B = Base G
grpcl.p + ˙ = + G
grpinvex.p 0 ˙ = 0 G
Assertion grpideu G Grp ∃! u B x B u + ˙ x = x x + ˙ u = x

Proof

Step Hyp Ref Expression
1 grpcl.b B = Base G
2 grpcl.p + ˙ = + G
3 grpinvex.p 0 ˙ = 0 G
4 grpmnd G Grp G Mnd
5 1 2 mndideu G Mnd ∃! u B x B u + ˙ x = x x + ˙ u = x
6 4 5 syl G Grp ∃! u B x B u + ˙ x = x x + ˙ u = x