Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpideu
Metamath Proof Explorer
Description: The two-sided identity element of a group is unique. Lemma 2.2.1(a) of
Herstein p. 55. (Contributed by NM , 16-Aug-2011) (Revised by Mario
Carneiro , 8-Dec-2014)
Ref
Expression
Hypotheses
grpcl.b
⊢ B = Base G
grpcl.p
⊢ + ˙ = + G
grpinvex.p
⊢ 0 ˙ = 0 G
Assertion
grpideu
⊢ G ∈ Grp → ∃! u ∈ B ∀ x ∈ B u + ˙ x = x ∧ x + ˙ u = x
Proof
Step
Hyp
Ref
Expression
1
grpcl.b
⊢ B = Base G
2
grpcl.p
⊢ + ˙ = + G
3
grpinvex.p
⊢ 0 ˙ = 0 G
4
grpmnd
⊢ G ∈ Grp → G ∈ Mnd
5
1 2
mndideu
⊢ G ∈ Mnd → ∃! u ∈ B ∀ x ∈ B u + ˙ x = x ∧ x + ˙ u = x
6
4 5
syl
⊢ G ∈ Grp → ∃! u ∈ B ∀ x ∈ B u + ˙ x = x ∧ x + ˙ u = x