Metamath Proof Explorer


Theorem grpidlcan

Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019)

Ref Expression
Hypotheses grpidrcan.b B = Base G
grpidrcan.p + ˙ = + G
grpidrcan.o 0 ˙ = 0 G
Assertion grpidlcan G Grp X B Z B Z + ˙ X = X Z = 0 ˙

Proof

Step Hyp Ref Expression
1 grpidrcan.b B = Base G
2 grpidrcan.p + ˙ = + G
3 grpidrcan.o 0 ˙ = 0 G
4 1 2 3 grplid G Grp X B 0 ˙ + ˙ X = X
5 4 3adant3 G Grp X B Z B 0 ˙ + ˙ X = X
6 5 eqeq2d G Grp X B Z B Z + ˙ X = 0 ˙ + ˙ X Z + ˙ X = X
7 simp1 G Grp X B Z B G Grp
8 simp3 G Grp X B Z B Z B
9 1 3 grpidcl G Grp 0 ˙ B
10 9 3ad2ant1 G Grp X B Z B 0 ˙ B
11 simp2 G Grp X B Z B X B
12 1 2 grprcan G Grp Z B 0 ˙ B X B Z + ˙ X = 0 ˙ + ˙ X Z = 0 ˙
13 7 8 10 11 12 syl13anc G Grp X B Z B Z + ˙ X = 0 ˙ + ˙ X Z = 0 ˙
14 6 13 bitr3d G Grp X B Z B Z + ˙ X = X Z = 0 ˙