Metamath Proof Explorer


Theorem grpidrcan

Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019)

Ref Expression
Hypotheses grpidrcan.b B = Base G
grpidrcan.p + ˙ = + G
grpidrcan.o 0 ˙ = 0 G
Assertion grpidrcan G Grp X B Z B X + ˙ Z = X Z = 0 ˙

Proof

Step Hyp Ref Expression
1 grpidrcan.b B = Base G
2 grpidrcan.p + ˙ = + G
3 grpidrcan.o 0 ˙ = 0 G
4 1 2 3 grprid G Grp X B X + ˙ 0 ˙ = X
5 4 3adant3 G Grp X B Z B X + ˙ 0 ˙ = X
6 5 eqeq2d G Grp X B Z B X + ˙ Z = X + ˙ 0 ˙ X + ˙ Z = X
7 simp1 G Grp X B Z B G Grp
8 simp3 G Grp X B Z B Z B
9 1 3 grpidcl G Grp 0 ˙ B
10 9 3ad2ant1 G Grp X B Z B 0 ˙ B
11 simp2 G Grp X B Z B X B
12 1 2 grplcan G Grp Z B 0 ˙ B X B X + ˙ Z = X + ˙ 0 ˙ Z = 0 ˙
13 7 8 10 11 12 syl13anc G Grp X B Z B X + ˙ Z = X + ˙ 0 ˙ Z = 0 ˙
14 6 13 bitr3d G Grp X B Z B X + ˙ Z = X Z = 0 ˙