Metamath Proof Explorer


Theorem grpidval

Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses grpidval.b B = Base G
grpidval.p + ˙ = + G
grpidval.o 0 ˙ = 0 G
Assertion grpidval 0 ˙ = ι e | e B x B e + ˙ x = x x + ˙ e = x

Proof

Step Hyp Ref Expression
1 grpidval.b B = Base G
2 grpidval.p + ˙ = + G
3 grpidval.o 0 ˙ = 0 G
4 fveq2 g = G Base g = Base G
5 4 1 eqtr4di g = G Base g = B
6 5 eleq2d g = G e Base g e B
7 fveq2 g = G + g = + G
8 7 2 eqtr4di g = G + g = + ˙
9 8 oveqd g = G e + g x = e + ˙ x
10 9 eqeq1d g = G e + g x = x e + ˙ x = x
11 8 oveqd g = G x + g e = x + ˙ e
12 11 eqeq1d g = G x + g e = x x + ˙ e = x
13 10 12 anbi12d g = G e + g x = x x + g e = x e + ˙ x = x x + ˙ e = x
14 5 13 raleqbidv g = G x Base g e + g x = x x + g e = x x B e + ˙ x = x x + ˙ e = x
15 6 14 anbi12d g = G e Base g x Base g e + g x = x x + g e = x e B x B e + ˙ x = x x + ˙ e = x
16 15 iotabidv g = G ι e | e Base g x Base g e + g x = x x + g e = x = ι e | e B x B e + ˙ x = x x + ˙ e = x
17 df-0g 0 𝑔 = g V ι e | e Base g x Base g e + g x = x x + g e = x
18 iotaex ι e | e B x B e + ˙ x = x x + ˙ e = x V
19 16 17 18 fvmpt G V 0 G = ι e | e B x B e + ˙ x = x x + ˙ e = x
20 fvprc ¬ G V 0 G =
21 euex ∃! e e B x B e + ˙ x = x x + ˙ e = x e e B x B e + ˙ x = x x + ˙ e = x
22 n0i e B ¬ B =
23 fvprc ¬ G V Base G =
24 1 23 eqtrid ¬ G V B =
25 22 24 nsyl2 e B G V
26 25 adantr e B x B e + ˙ x = x x + ˙ e = x G V
27 26 exlimiv e e B x B e + ˙ x = x x + ˙ e = x G V
28 21 27 syl ∃! e e B x B e + ˙ x = x x + ˙ e = x G V
29 iotanul ¬ ∃! e e B x B e + ˙ x = x x + ˙ e = x ι e | e B x B e + ˙ x = x x + ˙ e = x =
30 28 29 nsyl5 ¬ G V ι e | e B x B e + ˙ x = x x + ˙ e = x =
31 20 30 eqtr4d ¬ G V 0 G = ι e | e B x B e + ˙ x = x x + ˙ e = x
32 19 31 pm2.61i 0 G = ι e | e B x B e + ˙ x = x x + ˙ e = x
33 3 32 eqtri 0 ˙ = ι e | e B x B e + ˙ x = x x + ˙ e = x